yjh0410 31c6fab75a update 1 рік тому
..
README.md ef699ec31b train YOLOv5-AF-S 1 рік тому
build.py 264112178f build a new YOLO-Tutorial project for my book 1 рік тому
loss.py 264112178f build a new YOLO-Tutorial project for my book 1 рік тому
matcher.py 264112178f build a new YOLO-Tutorial project for my book 1 рік тому
yolov5.py 264112178f build a new YOLO-Tutorial project for my book 1 рік тому
yolov5_backbone.py 31c6fab75a update 1 рік тому
yolov5_basic.py 9c6622cdaa update 1 рік тому
yolov5_head.py d9faaca90c modify init 1 рік тому
yolov5_neck.py d9faaca90c modify init 1 рік тому
yolov5_pafpn.py d9faaca90c modify init 1 рік тому
yolov5_pred.py d9faaca90c modify init 1 рік тому

README.md

Redesigned YOLOv5:

  • VOC
  • COCO
Model Batch Scale APval
0.5
Weight Logs
YOLOv5-S 1xb16 640 79.0 ckpt log
  • For training, we train redesigned YOLOv5 with 300 epochs on COCO. We also use the gradient accumulation.
  • For data augmentation, we use the RandomAffine, RandomHSV, Mosaic and Mixup augmentation.
  • For optimizer, we use AdamW with weight decay of 0.05 and per image base lr of 0.001 / 64.
  • For learning rate scheduler, we use cosine decay scheduler.
  • For batch size, we set it to 16, and we also use the gradient accumulation to approximate batch size of 256.

Train YOLOv5

Single GPU

Taking training YOLOv5-S on COCO as the example,

python train.py --cuda -d coco --root path/to/coco -m yolov5_s -bs 16 --fp16 

Multi GPU

Taking training YOLOv5-S on COCO as the example,

python -m torch.distributed.run --nproc_per_node=8 train.py --cuda --distributed -d coco --root path/to/coco -m yolov5_s -bs 16 --fp16 

Test YOLOv5

Taking testing YOLOv5-S on COCO-val as the example,

python test.py --cuda -d coco --root path/to/coco -m yolov5_s --weight path/to/yolov5.pth --show 

Evaluate YOLOv5

Taking evaluating YOLOv5-S on COCO-val as the example,

python eval.py --cuda -d coco --root path/to/coco -m yolov5_s --weight path/to/yolov5.pth 

Demo

Detect with Image

python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov5_s --weight path/to/weight --show

Detect with Video

python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov5_s --weight path/to/weight --show --gif

Detect with Camera

python demo.py --mode camera --cuda -m yolov5_s --weight path/to/weight --show --gif
Model Batch Scale APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight Logs
YOLOv5-S 1xb16 640 38.8 56.9 27.3 9.0 ckpt log