| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- # yolo Config
- def build_yolov7_config(args):
- return Yolov7AFConfig()
-
- # Anchor-free YOLOv7 config
- class Yolov7AFConfig(object):
- def __init__(self) -> None:
- # ---------------- Model config ----------------
- self.out_stride = [8, 16, 32]
- self.max_stride = 32
- ## Backbone
- self.use_pretrained = True
- ## Head
- self.head_dim = 256
- self.num_cls_head = 2
- self.num_reg_head = 2
- # ---------------- Post-process config ----------------
- ## Post process
- self.val_topk = 1000
- self.val_conf_thresh = 0.001
- self.val_nms_thresh = 0.7
- self.test_topk = 100
- self.test_conf_thresh = 0.45
- self.test_nms_thresh = 0.5
- # ---------------- Assignment config ----------------
- ## Matcher
- self.ota_center_sampling_radius = 2.5
- self.ota_topk_candidate = 10
- ## Loss weight
- self.loss_obj = 1.0
- self.loss_cls = 1.0
- self.loss_box = 5.0
- # ---------------- ModelEMA config ----------------
- self.use_ema = True
- self.ema_decay = 0.9998
- self.ema_tau = 2000
- # ---------------- Optimizer config ----------------
- self.trainer = 'yolo'
- self.optimizer = 'adamw'
- self.base_lr = 0.001 # base_lr = per_image_lr * batch_size
- self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
- self.batch_size_base = 64
- self.momentum = 0.9
- self.weight_decay = 0.05
- self.clip_max_norm = 35.0
- self.warmup_bias_lr = 0.1
- self.warmup_momentum = 0.8
- # ---------------- Lr Scheduler config ----------------
- self.warmup_epoch = 3
- self.lr_scheduler = "cosine"
- self.max_epoch = 300
- self.eval_epoch = 10
- self.no_aug_epoch = 20
- # ---------------- Data process config ----------------
- self.aug_type = 'yolo'
- self.mosaic_prob = 1.0
- self.mixup_prob = 0.1
- self.copy_paste = 0.0 # approximated by the YOLOX's mixup
- self.multi_scale = [0.5, 1.25] # multi scale: [img_size * 0.5, img_size * 1.25]
- ## Pixel mean & std
- self.pixel_mean = [0., 0., 0.]
- self.pixel_std = [255., 255., 255.]
- ## Transforms
- self.train_img_size = 640
- self.test_img_size = 640
- self.affine_params = {
- 'degrees': 0.0,
- 'translate': 0.2,
- 'scale': [0.1, 2.0],
- 'shear': 0.0,
- 'perspective': 0.0,
- 'hsv_h': 0.015,
- 'hsv_s': 0.7,
- 'hsv_v': 0.4,
- }
- def print_config(self):
- config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
- for k, v in config_dict.items():
- print("{} : {}".format(k, v))
|