yolov7_config.py 2.8 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
  1. # yolo Config
  2. def build_yolov7_config(args):
  3. return Yolov7AFConfig()
  4. # Anchor-free YOLOv7 config
  5. class Yolov7AFConfig(object):
  6. def __init__(self) -> None:
  7. # ---------------- Model config ----------------
  8. self.out_stride = [8, 16, 32]
  9. self.max_stride = 32
  10. ## Backbone
  11. self.use_pretrained = True
  12. ## Head
  13. self.head_dim = 256
  14. self.num_cls_head = 2
  15. self.num_reg_head = 2
  16. # ---------------- Post-process config ----------------
  17. ## Post process
  18. self.val_topk = 1000
  19. self.val_conf_thresh = 0.001
  20. self.val_nms_thresh = 0.7
  21. self.test_topk = 100
  22. self.test_conf_thresh = 0.45
  23. self.test_nms_thresh = 0.5
  24. # ---------------- Assignment config ----------------
  25. ## Matcher
  26. self.ota_center_sampling_radius = 2.5
  27. self.ota_topk_candidate = 10
  28. ## Loss weight
  29. self.loss_obj = 1.0
  30. self.loss_cls = 1.0
  31. self.loss_box = 5.0
  32. # ---------------- ModelEMA config ----------------
  33. self.use_ema = True
  34. self.ema_decay = 0.9998
  35. self.ema_tau = 2000
  36. # ---------------- Optimizer config ----------------
  37. self.trainer = 'yolo'
  38. self.optimizer = 'adamw'
  39. self.base_lr = 0.001 # base_lr = per_image_lr * batch_size
  40. self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
  41. self.batch_size_base = 64
  42. self.momentum = 0.9
  43. self.weight_decay = 0.05
  44. self.clip_max_norm = 35.0
  45. self.warmup_bias_lr = 0.1
  46. self.warmup_momentum = 0.8
  47. # ---------------- Lr Scheduler config ----------------
  48. self.warmup_epoch = 3
  49. self.lr_scheduler = "cosine"
  50. self.max_epoch = 300
  51. self.eval_epoch = 10
  52. self.no_aug_epoch = 20
  53. # ---------------- Data process config ----------------
  54. self.aug_type = 'yolo'
  55. self.mosaic_prob = 1.0
  56. self.mixup_prob = 0.1
  57. self.copy_paste = 0.0 # approximated by the YOLOX's mixup
  58. self.multi_scale = [0.5, 1.25] # multi scale: [img_size * 0.5, img_size * 1.25]
  59. ## Pixel mean & std
  60. self.pixel_mean = [0., 0., 0.]
  61. self.pixel_std = [255., 255., 255.]
  62. ## Transforms
  63. self.train_img_size = 640
  64. self.test_img_size = 640
  65. self.affine_params = {
  66. 'degrees': 0.0,
  67. 'translate': 0.2,
  68. 'scale': [0.1, 2.0],
  69. 'shear': 0.0,
  70. 'perspective': 0.0,
  71. 'hsv_h': 0.015,
  72. 'hsv_s': 0.7,
  73. 'hsv_v': 0.4,
  74. }
  75. def print_config(self):
  76. config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
  77. for k, v in config_dict.items():
  78. print("{} : {}".format(k, v))