loss.py 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from utils.misc import sigmoid_focal_loss
  5. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  6. from .matcher import FcosMatcher
  7. class SetCriterion(object):
  8. def __init__(self, cfg):
  9. # ------------- Basic parameters -------------
  10. self.cfg = cfg
  11. self.num_classes = cfg.num_classes
  12. # ------------- Focal loss -------------
  13. self.alpha = cfg.focal_loss_alpha
  14. self.gamma = cfg.focal_loss_gamma
  15. # ------------- Loss weight -------------
  16. self.weight_dict = {'loss_cls': cfg.loss_cls,
  17. 'loss_reg': cfg.loss_reg,
  18. 'loss_ctn': cfg.loss_ctn,}
  19. # ------------- Matcher -------------
  20. self.matcher = FcosMatcher(cfg.num_classes,
  21. center_sampling_radius=cfg.center_sampling_radius,
  22. object_sizes_of_interest=cfg.object_sizes_of_interest,
  23. box_weights=[1., 1., 1., 1.],
  24. )
  25. def loss_labels(self, pred_cls, tgt_cls, num_boxes=1.0):
  26. """
  27. pred_cls: (Tensor) [N, C]
  28. tgt_cls: (Tensor) [N, C]
  29. """
  30. # cls loss: [V, C]
  31. loss_cls = sigmoid_focal_loss(pred_cls, tgt_cls, self.alpha, self.gamma)
  32. return loss_cls.sum() / num_boxes
  33. def loss_bboxes(self, pred_delta, tgt_delta, bbox_quality=None, num_boxes=1.0):
  34. """
  35. pred_box: (Tensor) [N, 4]
  36. tgt_box: (Tensor) [N, 4]
  37. """
  38. pred_delta = torch.cat((-pred_delta[..., :2], pred_delta[..., 2:]), dim=-1)
  39. tgt_delta = torch.cat((-tgt_delta[..., :2], tgt_delta[..., 2:]), dim=-1)
  40. eps = torch.finfo(torch.float32).eps
  41. pred_area = (pred_delta[..., 2] - pred_delta[..., 0]).clamp_(min=0) \
  42. * (pred_delta[..., 3] - pred_delta[..., 1]).clamp_(min=0)
  43. tgt_area = (tgt_delta[..., 2] - tgt_delta[..., 0]).clamp_(min=0) \
  44. * (tgt_delta[..., 3] - tgt_delta[..., 1]).clamp_(min=0)
  45. w_intersect = (torch.min(pred_delta[..., 2], tgt_delta[..., 2])
  46. - torch.max(pred_delta[..., 0], tgt_delta[..., 0])).clamp_(min=0)
  47. h_intersect = (torch.min(pred_delta[..., 3], tgt_delta[..., 3])
  48. - torch.max(pred_delta[..., 1], tgt_delta[..., 1])).clamp_(min=0)
  49. area_intersect = w_intersect * h_intersect
  50. area_union = tgt_area + pred_area - area_intersect
  51. ious = area_intersect / area_union.clamp(min=eps)
  52. # giou
  53. g_w_intersect = torch.max(pred_delta[..., 2], tgt_delta[..., 2]) \
  54. - torch.min(pred_delta[..., 0], tgt_delta[..., 0])
  55. g_h_intersect = torch.max(pred_delta[..., 3], tgt_delta[..., 3]) \
  56. - torch.min(pred_delta[..., 1], tgt_delta[..., 1])
  57. ac_uion = g_w_intersect * g_h_intersect
  58. gious = ious - (ac_uion - area_union) / ac_uion.clamp(min=eps)
  59. loss_box = 1 - gious
  60. if bbox_quality is not None:
  61. loss_box = loss_box * bbox_quality.view(loss_box.size())
  62. return loss_box.sum() / num_boxes
  63. def __call__(self, outputs, targets):
  64. """
  65. outputs['pred_cls']: (Tensor) [B, M, C]
  66. outputs['pred_reg']: (Tensor) [B, M, 4]
  67. outputs['pred_ctn']: (Tensor) [B, M, 1]
  68. outputs['strides']: (List) [8, 16, 32, ...] stride of the model output
  69. targets: (List) [dict{'boxes': [...],
  70. 'labels': [...],
  71. 'orig_size': ...}, ...]
  72. """
  73. # -------------------- Pre-process --------------------
  74. device = outputs['pred_cls'][0].device
  75. fpn_strides = outputs['strides']
  76. anchors = outputs['anchors']
  77. pred_cls = torch.cat(outputs['pred_cls'], dim=1).view(-1, self.num_classes)
  78. pred_delta = torch.cat(outputs['pred_reg'], dim=1).view(-1, 4)
  79. pred_ctn = torch.cat(outputs['pred_ctn'], dim=1).view(-1, 1)
  80. # -------------------- Label Assignment --------------------
  81. gt_classes, gt_deltas, gt_centerness = self.matcher(fpn_strides, anchors, targets)
  82. gt_classes = gt_classes.flatten().to(device)
  83. gt_deltas = gt_deltas.view(-1, 4).to(device)
  84. gt_centerness = gt_centerness.view(-1, 1).to(device)
  85. fg_masks = (gt_classes >= 0) & (gt_classes != self.num_classes)
  86. num_fgs = fg_masks.sum()
  87. if is_dist_avail_and_initialized():
  88. torch.distributed.all_reduce(num_fgs)
  89. num_fgs = torch.clamp(num_fgs / get_world_size(), min=1).item()
  90. num_fgs_ctn = gt_centerness[fg_masks].sum()
  91. if is_dist_avail_and_initialized():
  92. torch.distributed.all_reduce(num_fgs_ctn)
  93. num_targets = torch.clamp(num_fgs_ctn / get_world_size(), min=1).item()
  94. # -------------------- classification loss --------------------
  95. gt_classes_target = torch.zeros_like(pred_cls)
  96. gt_classes_target[fg_masks, gt_classes[fg_masks]] = 1
  97. loss_labels = self.loss_labels(pred_cls, gt_classes_target, num_fgs)
  98. # -------------------- regression loss --------------------
  99. loss_bboxes = self.loss_bboxes(
  100. pred_delta[fg_masks], gt_deltas[fg_masks], gt_centerness[fg_masks], num_targets)
  101. # -------------------- centerness loss --------------------
  102. loss_centerness = F.binary_cross_entropy_with_logits(
  103. pred_ctn[fg_masks], gt_centerness[fg_masks], reduction='none')
  104. loss_centerness = loss_centerness.sum() / num_fgs
  105. total_loss = loss_labels * self.weight_dict["loss_cls"] + \
  106. loss_bboxes * self.weight_dict["loss_reg"] + \
  107. loss_centerness * self.weight_dict["loss_ctn"]
  108. loss_dict = dict(
  109. loss_cls = loss_labels,
  110. loss_reg = loss_bboxes,
  111. loss_ctn = loss_centerness,
  112. losses = total_loss,
  113. )
  114. return loss_dict