| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from utils.misc import sigmoid_focal_loss
- from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
- from .matcher import FcosMatcher
- class SetCriterion(object):
- def __init__(self, cfg):
- # ------------- Basic parameters -------------
- self.cfg = cfg
- self.num_classes = cfg.num_classes
- # ------------- Focal loss -------------
- self.alpha = cfg.focal_loss_alpha
- self.gamma = cfg.focal_loss_gamma
- # ------------- Loss weight -------------
- self.weight_dict = {'loss_cls': cfg.loss_cls,
- 'loss_reg': cfg.loss_reg,
- 'loss_ctn': cfg.loss_ctn,}
-
- # ------------- Matcher -------------
- self.matcher = FcosMatcher(cfg.num_classes,
- center_sampling_radius=cfg.center_sampling_radius,
- object_sizes_of_interest=cfg.object_sizes_of_interest,
- box_weights=[1., 1., 1., 1.],
- )
- def loss_labels(self, pred_cls, tgt_cls, num_boxes=1.0):
- """
- pred_cls: (Tensor) [N, C]
- tgt_cls: (Tensor) [N, C]
- """
- # cls loss: [V, C]
- loss_cls = sigmoid_focal_loss(pred_cls, tgt_cls, self.alpha, self.gamma)
- return loss_cls.sum() / num_boxes
- def loss_bboxes(self, pred_delta, tgt_delta, bbox_quality=None, num_boxes=1.0):
- """
- pred_box: (Tensor) [N, 4]
- tgt_box: (Tensor) [N, 4]
- """
- pred_delta = torch.cat((-pred_delta[..., :2], pred_delta[..., 2:]), dim=-1)
- tgt_delta = torch.cat((-tgt_delta[..., :2], tgt_delta[..., 2:]), dim=-1)
- eps = torch.finfo(torch.float32).eps
- pred_area = (pred_delta[..., 2] - pred_delta[..., 0]).clamp_(min=0) \
- * (pred_delta[..., 3] - pred_delta[..., 1]).clamp_(min=0)
- tgt_area = (tgt_delta[..., 2] - tgt_delta[..., 0]).clamp_(min=0) \
- * (tgt_delta[..., 3] - tgt_delta[..., 1]).clamp_(min=0)
- w_intersect = (torch.min(pred_delta[..., 2], tgt_delta[..., 2])
- - torch.max(pred_delta[..., 0], tgt_delta[..., 0])).clamp_(min=0)
- h_intersect = (torch.min(pred_delta[..., 3], tgt_delta[..., 3])
- - torch.max(pred_delta[..., 1], tgt_delta[..., 1])).clamp_(min=0)
- area_intersect = w_intersect * h_intersect
- area_union = tgt_area + pred_area - area_intersect
- ious = area_intersect / area_union.clamp(min=eps)
- # giou
- g_w_intersect = torch.max(pred_delta[..., 2], tgt_delta[..., 2]) \
- - torch.min(pred_delta[..., 0], tgt_delta[..., 0])
- g_h_intersect = torch.max(pred_delta[..., 3], tgt_delta[..., 3]) \
- - torch.min(pred_delta[..., 1], tgt_delta[..., 1])
- ac_uion = g_w_intersect * g_h_intersect
- gious = ious - (ac_uion - area_union) / ac_uion.clamp(min=eps)
- loss_box = 1 - gious
- if bbox_quality is not None:
- loss_box = loss_box * bbox_quality.view(loss_box.size())
- return loss_box.sum() / num_boxes
- def __call__(self, outputs, targets):
- """
- outputs['pred_cls']: (Tensor) [B, M, C]
- outputs['pred_reg']: (Tensor) [B, M, 4]
- outputs['pred_ctn']: (Tensor) [B, M, 1]
- outputs['strides']: (List) [8, 16, 32, ...] stride of the model output
- targets: (List) [dict{'boxes': [...],
- 'labels': [...],
- 'orig_size': ...}, ...]
- """
- # -------------------- Pre-process --------------------
- device = outputs['pred_cls'][0].device
- fpn_strides = outputs['strides']
- anchors = outputs['anchors']
- pred_cls = torch.cat(outputs['pred_cls'], dim=1).view(-1, self.num_classes)
- pred_delta = torch.cat(outputs['pred_reg'], dim=1).view(-1, 4)
- pred_ctn = torch.cat(outputs['pred_ctn'], dim=1).view(-1, 1)
- # -------------------- Label Assignment --------------------
- gt_classes, gt_deltas, gt_centerness = self.matcher(fpn_strides, anchors, targets)
- gt_classes = gt_classes.flatten().to(device)
- gt_deltas = gt_deltas.view(-1, 4).to(device)
- gt_centerness = gt_centerness.view(-1, 1).to(device)
- fg_masks = (gt_classes >= 0) & (gt_classes != self.num_classes)
- num_fgs = fg_masks.sum()
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_fgs)
- num_fgs = torch.clamp(num_fgs / get_world_size(), min=1).item()
- num_fgs_ctn = gt_centerness[fg_masks].sum()
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_fgs_ctn)
- num_targets = torch.clamp(num_fgs_ctn / get_world_size(), min=1).item()
- # -------------------- classification loss --------------------
- gt_classes_target = torch.zeros_like(pred_cls)
- gt_classes_target[fg_masks, gt_classes[fg_masks]] = 1
- loss_labels = self.loss_labels(pred_cls, gt_classes_target, num_fgs)
- # -------------------- regression loss --------------------
- loss_bboxes = self.loss_bboxes(
- pred_delta[fg_masks], gt_deltas[fg_masks], gt_centerness[fg_masks], num_targets)
- # -------------------- centerness loss --------------------
- loss_centerness = F.binary_cross_entropy_with_logits(
- pred_ctn[fg_masks], gt_centerness[fg_masks], reduction='none')
- loss_centerness = loss_centerness.sum() / num_fgs
- total_loss = loss_labels * self.weight_dict["loss_cls"] + \
- loss_bboxes * self.weight_dict["loss_reg"] + \
- loss_centerness * self.weight_dict["loss_ctn"]
- loss_dict = dict(
- loss_cls = loss_labels,
- loss_reg = loss_bboxes,
- loss_ctn = loss_centerness,
- losses = total_loss,
- )
- return loss_dict
|