import torch import torch.nn as nn import torch.nn.functional as F from utils.misc import sigmoid_focal_loss from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized from .matcher import FcosMatcher class SetCriterion(object): def __init__(self, cfg): # ------------- Basic parameters ------------- self.cfg = cfg self.num_classes = cfg.num_classes # ------------- Focal loss ------------- self.alpha = cfg.focal_loss_alpha self.gamma = cfg.focal_loss_gamma # ------------- Loss weight ------------- self.weight_dict = {'loss_cls': cfg.loss_cls, 'loss_reg': cfg.loss_reg, 'loss_ctn': cfg.loss_ctn,} # ------------- Matcher ------------- self.matcher = FcosMatcher(cfg.num_classes, center_sampling_radius=cfg.center_sampling_radius, object_sizes_of_interest=cfg.object_sizes_of_interest, box_weights=[1., 1., 1., 1.], ) def loss_labels(self, pred_cls, tgt_cls, num_boxes=1.0): """ pred_cls: (Tensor) [N, C] tgt_cls: (Tensor) [N, C] """ # cls loss: [V, C] loss_cls = sigmoid_focal_loss(pred_cls, tgt_cls, self.alpha, self.gamma) return loss_cls.sum() / num_boxes def loss_bboxes(self, pred_delta, tgt_delta, bbox_quality=None, num_boxes=1.0): """ pred_box: (Tensor) [N, 4] tgt_box: (Tensor) [N, 4] """ pred_delta = torch.cat((-pred_delta[..., :2], pred_delta[..., 2:]), dim=-1) tgt_delta = torch.cat((-tgt_delta[..., :2], tgt_delta[..., 2:]), dim=-1) eps = torch.finfo(torch.float32).eps pred_area = (pred_delta[..., 2] - pred_delta[..., 0]).clamp_(min=0) \ * (pred_delta[..., 3] - pred_delta[..., 1]).clamp_(min=0) tgt_area = (tgt_delta[..., 2] - tgt_delta[..., 0]).clamp_(min=0) \ * (tgt_delta[..., 3] - tgt_delta[..., 1]).clamp_(min=0) w_intersect = (torch.min(pred_delta[..., 2], tgt_delta[..., 2]) - torch.max(pred_delta[..., 0], tgt_delta[..., 0])).clamp_(min=0) h_intersect = (torch.min(pred_delta[..., 3], tgt_delta[..., 3]) - torch.max(pred_delta[..., 1], tgt_delta[..., 1])).clamp_(min=0) area_intersect = w_intersect * h_intersect area_union = tgt_area + pred_area - area_intersect ious = area_intersect / area_union.clamp(min=eps) # giou g_w_intersect = torch.max(pred_delta[..., 2], tgt_delta[..., 2]) \ - torch.min(pred_delta[..., 0], tgt_delta[..., 0]) g_h_intersect = torch.max(pred_delta[..., 3], tgt_delta[..., 3]) \ - torch.min(pred_delta[..., 1], tgt_delta[..., 1]) ac_uion = g_w_intersect * g_h_intersect gious = ious - (ac_uion - area_union) / ac_uion.clamp(min=eps) loss_box = 1 - gious if bbox_quality is not None: loss_box = loss_box * bbox_quality.view(loss_box.size()) return loss_box.sum() / num_boxes def __call__(self, outputs, targets): """ outputs['pred_cls']: (Tensor) [B, M, C] outputs['pred_reg']: (Tensor) [B, M, 4] outputs['pred_ctn']: (Tensor) [B, M, 1] outputs['strides']: (List) [8, 16, 32, ...] stride of the model output targets: (List) [dict{'boxes': [...], 'labels': [...], 'orig_size': ...}, ...] """ # -------------------- Pre-process -------------------- device = outputs['pred_cls'][0].device fpn_strides = outputs['strides'] anchors = outputs['anchors'] pred_cls = torch.cat(outputs['pred_cls'], dim=1).view(-1, self.num_classes) pred_delta = torch.cat(outputs['pred_reg'], dim=1).view(-1, 4) pred_ctn = torch.cat(outputs['pred_ctn'], dim=1).view(-1, 1) # -------------------- Label Assignment -------------------- gt_classes, gt_deltas, gt_centerness = self.matcher(fpn_strides, anchors, targets) gt_classes = gt_classes.flatten().to(device) gt_deltas = gt_deltas.view(-1, 4).to(device) gt_centerness = gt_centerness.view(-1, 1).to(device) fg_masks = (gt_classes >= 0) & (gt_classes != self.num_classes) num_fgs = fg_masks.sum() if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_fgs) num_fgs = torch.clamp(num_fgs / get_world_size(), min=1).item() num_fgs_ctn = gt_centerness[fg_masks].sum() if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_fgs_ctn) num_targets = torch.clamp(num_fgs_ctn / get_world_size(), min=1).item() # -------------------- classification loss -------------------- gt_classes_target = torch.zeros_like(pred_cls) gt_classes_target[fg_masks, gt_classes[fg_masks]] = 1 loss_labels = self.loss_labels(pred_cls, gt_classes_target, num_fgs) # -------------------- regression loss -------------------- loss_bboxes = self.loss_bboxes( pred_delta[fg_masks], gt_deltas[fg_masks], gt_centerness[fg_masks], num_targets) # -------------------- centerness loss -------------------- loss_centerness = F.binary_cross_entropy_with_logits( pred_ctn[fg_masks], gt_centerness[fg_masks], reduction='none') loss_centerness = loss_centerness.sum() / num_fgs total_loss = loss_labels * self.weight_dict["loss_cls"] + \ loss_bboxes * self.weight_dict["loss_reg"] + \ loss_centerness * self.weight_dict["loss_ctn"] loss_dict = dict( loss_cls = loss_labels, loss_reg = loss_bboxes, loss_ctn = loss_centerness, losses = total_loss, ) return loss_dict