fcos.py 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115
  1. import torch
  2. import torch.nn as nn
  3. # --------------- Model components ---------------
  4. from .fcos_backbone import FcosBackbone
  5. from .fcos_fpn import FcosFPN
  6. from .fcos_head import FcosHead
  7. # --------------- External components ---------------
  8. from utils.misc import multiclass_nms
  9. # ------------------------ Fully Convolutional One-Stage Detector ------------------------
  10. class Fcos(nn.Module):
  11. def __init__(self,
  12. cfg,
  13. is_val = False,
  14. ) -> None:
  15. super(Fcos, self).__init__()
  16. # ---------------------- Basic setting ----------------------
  17. self.cfg = cfg
  18. self.num_classes = cfg.num_classes
  19. ## Post-process parameters
  20. self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
  21. self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
  22. self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
  23. self.no_multi_labels = False if is_val else True
  24. # ---------------------- Network Parameters ----------------------
  25. self.backbone = FcosBackbone(cfg)
  26. self.fpn = FcosFPN(cfg, self.backbone.feat_dims[-3:])
  27. self.head = FcosHead(cfg, self.fpn.out_dim)
  28. def post_process(self, cls_preds, ctn_preds, box_preds):
  29. """
  30. Input:
  31. cls_preds: List(Tensor) [[B, H x W, C], ...]
  32. ctn_preds: List(Tensor) [[B, H x W, 1], ...]
  33. box_preds: List(Tensor) [[B, H x W, 4], ...]
  34. """
  35. all_scores = []
  36. all_labels = []
  37. all_bboxes = []
  38. for cls_pred_i, ctn_pred_i, box_pred_i in zip(cls_preds, ctn_preds, box_preds):
  39. cls_pred_i = cls_pred_i[0]
  40. ctn_pred_i = ctn_pred_i[0]
  41. box_pred_i = box_pred_i[0]
  42. # (H x W x C,)
  43. scores_i = torch.sqrt(cls_pred_i.sigmoid() * ctn_pred_i.sigmoid()).flatten()
  44. # Keep top k top scoring indices only.
  45. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  46. # torch.sort is actually faster than .topk (at least on GPUs)
  47. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  48. topk_scores = predicted_prob[:num_topk]
  49. topk_idxs = topk_idxs[:num_topk]
  50. # filter out the proposals with low confidence score
  51. keep_idxs = topk_scores > self.conf_thresh
  52. topk_idxs = topk_idxs[keep_idxs]
  53. # final scores
  54. scores = topk_scores[keep_idxs]
  55. # final labels
  56. labels = topk_idxs % self.num_classes
  57. # final bboxes
  58. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  59. bboxes = box_pred_i[anchor_idxs]
  60. all_scores.append(scores)
  61. all_labels.append(labels)
  62. all_bboxes.append(bboxes)
  63. scores = torch.cat(all_scores)
  64. labels = torch.cat(all_labels)
  65. bboxes = torch.cat(all_bboxes)
  66. # to cpu & numpy
  67. scores = scores.cpu().numpy()
  68. labels = labels.cpu().numpy()
  69. bboxes = bboxes.cpu().numpy()
  70. # nms
  71. scores, labels, bboxes = multiclass_nms(
  72. scores, labels, bboxes, self.nms_thresh, self.num_classes)
  73. return bboxes, scores, labels
  74. def forward(self, x):
  75. # ---------------- Backbone ----------------
  76. pyramid_feats = self.backbone(x)
  77. # ---------------- Neck ----------------
  78. pyramid_feats = self.fpn(pyramid_feats)
  79. # ---------------- Heads ----------------
  80. outputs = self.head(pyramid_feats)
  81. if not self.training:
  82. # ---------------- PostProcess ----------------
  83. cls_pred = outputs["pred_cls"]
  84. ctn_pred = outputs["pred_ctn"]
  85. box_pred = outputs["pred_box"]
  86. bboxes, scores, labels = self.post_process(cls_pred, ctn_pred, box_pred)
  87. outputs = {
  88. 'scores': scores,
  89. 'labels': labels,
  90. 'bboxes': bboxes
  91. }
  92. return outputs