import torch import torch.nn as nn # --------------- Model components --------------- from .fcos_backbone import FcosBackbone from .fcos_fpn import FcosFPN from .fcos_head import FcosHead # --------------- External components --------------- from utils.misc import multiclass_nms # ------------------------ Fully Convolutional One-Stage Detector ------------------------ class Fcos(nn.Module): def __init__(self, cfg, is_val = False, ) -> None: super(Fcos, self).__init__() # ---------------------- Basic setting ---------------------- self.cfg = cfg self.num_classes = cfg.num_classes ## Post-process parameters self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh self.no_multi_labels = False if is_val else True # ---------------------- Network Parameters ---------------------- self.backbone = FcosBackbone(cfg) self.fpn = FcosFPN(cfg, self.backbone.feat_dims[-3:]) self.head = FcosHead(cfg, self.fpn.out_dim) def post_process(self, cls_preds, ctn_preds, box_preds): """ Input: cls_preds: List(Tensor) [[B, H x W, C], ...] ctn_preds: List(Tensor) [[B, H x W, 1], ...] box_preds: List(Tensor) [[B, H x W, 4], ...] """ all_scores = [] all_labels = [] all_bboxes = [] for cls_pred_i, ctn_pred_i, box_pred_i in zip(cls_preds, ctn_preds, box_preds): cls_pred_i = cls_pred_i[0] ctn_pred_i = ctn_pred_i[0] box_pred_i = box_pred_i[0] # (H x W x C,) scores_i = torch.sqrt(cls_pred_i.sigmoid() * ctn_pred_i.sigmoid()).flatten() # Keep top k top scoring indices only. num_topk = min(self.topk_candidates, box_pred_i.size(0)) # torch.sort is actually faster than .topk (at least on GPUs) predicted_prob, topk_idxs = scores_i.sort(descending=True) topk_scores = predicted_prob[:num_topk] topk_idxs = topk_idxs[:num_topk] # filter out the proposals with low confidence score keep_idxs = topk_scores > self.conf_thresh topk_idxs = topk_idxs[keep_idxs] # final scores scores = topk_scores[keep_idxs] # final labels labels = topk_idxs % self.num_classes # final bboxes anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor') bboxes = box_pred_i[anchor_idxs] all_scores.append(scores) all_labels.append(labels) all_bboxes.append(bboxes) scores = torch.cat(all_scores) labels = torch.cat(all_labels) bboxes = torch.cat(all_bboxes) # to cpu & numpy scores = scores.cpu().numpy() labels = labels.cpu().numpy() bboxes = bboxes.cpu().numpy() # nms scores, labels, bboxes = multiclass_nms( scores, labels, bboxes, self.nms_thresh, self.num_classes) return bboxes, scores, labels def forward(self, x): # ---------------- Backbone ---------------- pyramid_feats = self.backbone(x) # ---------------- Neck ---------------- pyramid_feats = self.fpn(pyramid_feats) # ---------------- Heads ---------------- outputs = self.head(pyramid_feats) if not self.training: # ---------------- PostProcess ---------------- cls_pred = outputs["pred_cls"] ctn_pred = outputs["pred_ctn"] box_pred = outputs["pred_box"] bboxes, scores, labels = self.post_process(cls_pred, ctn_pred, box_pred) outputs = { 'scores': scores, 'labels': labels, 'bboxes': bboxes } return outputs