|
|
@@ -1,190 +0,0 @@
|
|
|
-import torch
|
|
|
-import torch.nn as nn
|
|
|
-import torch.utils.model_zoo as model_zoo
|
|
|
-
|
|
|
-try:
|
|
|
- from .yolov3_basic import conv1x1, BasicBlock, Bottleneck
|
|
|
-except:
|
|
|
- from yolov3_basic import conv1x1, BasicBlock, Bottleneck
|
|
|
-
|
|
|
-__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
|
|
|
- 'resnet152']
|
|
|
-
|
|
|
-
|
|
|
-model_urls = {
|
|
|
- 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
|
|
|
- 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
|
|
|
- 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
|
|
- 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
|
|
- 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-# --------------------- ResNet -----------------------
|
|
|
-class ResNet(nn.Module):
|
|
|
-
|
|
|
- def __init__(self, block, layers, zero_init_residual=False):
|
|
|
- super(ResNet, self).__init__()
|
|
|
- self.inplanes = 64
|
|
|
- self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
|
|
- bias=False)
|
|
|
- self.bn1 = nn.BatchNorm2d(64)
|
|
|
- self.relu = nn.ReLU(inplace=True)
|
|
|
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
|
- self.layer1 = self._make_layer(block, 64, layers[0])
|
|
|
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
|
|
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
|
|
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
|
|
-
|
|
|
- for m in self.modules():
|
|
|
- if isinstance(m, nn.Conv2d):
|
|
|
- nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
|
- elif isinstance(m, nn.BatchNorm2d):
|
|
|
- nn.init.constant_(m.weight, 1)
|
|
|
- nn.init.constant_(m.bias, 0)
|
|
|
-
|
|
|
- # Zero-initialize the last BN in each residual branch,
|
|
|
- # so that the residual branch starts with zeros, and each residual block behaves like an identity.
|
|
|
- # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
|
|
|
- if zero_init_residual:
|
|
|
- for m in self.modules():
|
|
|
- if isinstance(m, Bottleneck):
|
|
|
- nn.init.constant_(m.bn3.weight, 0)
|
|
|
- elif isinstance(m, BasicBlock):
|
|
|
- nn.init.constant_(m.bn2.weight, 0)
|
|
|
-
|
|
|
- def _make_layer(self, block, planes, blocks, stride=1):
|
|
|
- downsample = None
|
|
|
- if stride != 1 or self.inplanes != planes * block.expansion:
|
|
|
- downsample = nn.Sequential(
|
|
|
- conv1x1(self.inplanes, planes * block.expansion, stride),
|
|
|
- nn.BatchNorm2d(planes * block.expansion),
|
|
|
- )
|
|
|
-
|
|
|
- layers = []
|
|
|
- layers.append(block(self.inplanes, planes, stride, downsample))
|
|
|
- self.inplanes = planes * block.expansion
|
|
|
- for _ in range(1, blocks):
|
|
|
- layers.append(block(self.inplanes, planes))
|
|
|
-
|
|
|
- return nn.Sequential(*layers)
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- """
|
|
|
- Input:
|
|
|
- x: (Tensor) -> [B, C, H, W]
|
|
|
- Output:
|
|
|
- c5: (Tensor) -> [B, C, H/32, W/32]
|
|
|
- """
|
|
|
- c1 = self.conv1(x) # [B, C, H/2, W/2]
|
|
|
- c1 = self.bn1(c1) # [B, C, H/2, W/2]
|
|
|
- c1 = self.relu(c1) # [B, C, H/2, W/2]
|
|
|
- c2 = self.maxpool(c1) # [B, C, H/4, W/4]
|
|
|
-
|
|
|
- c2 = self.layer1(c2) # [B, C, H/4, W/4]
|
|
|
- c3 = self.layer2(c2) # [B, C, H/8, W/8]
|
|
|
- c4 = self.layer3(c3) # [B, C, H/16, W/16]
|
|
|
- c5 = self.layer4(c4) # [B, C, H/32, W/32]
|
|
|
-
|
|
|
- output = [c3, c4, c5]
|
|
|
-
|
|
|
- return output
|
|
|
-
|
|
|
-
|
|
|
-# --------------------- Functions -----------------------
|
|
|
-def build_resnet(model_name="resnet18", pretrained=False):
|
|
|
- if model_name == 'resnet18':
|
|
|
- model = resnet18(pretrained)
|
|
|
- feat_dims = [128, 256, 512]
|
|
|
- elif model_name == 'resnet34':
|
|
|
- model = resnet34(pretrained)
|
|
|
- feat_dims = [128, 256, 512]
|
|
|
- elif model_name == 'resnet50':
|
|
|
- model = resnet50(pretrained)
|
|
|
- feat_dims = [512, 1024, 2048]
|
|
|
- elif model_name == 'resnet101':
|
|
|
- model = resnet34(pretrained)
|
|
|
- feat_dims = [512, 1024, 2048]
|
|
|
- else:
|
|
|
- raise NotImplementedError("Unknown resnet: {}".format(model_name))
|
|
|
-
|
|
|
- return model, feat_dims
|
|
|
-
|
|
|
-def resnet18(pretrained=False, **kwargs):
|
|
|
- """Constructs a ResNet-18 model.
|
|
|
-
|
|
|
- Args:
|
|
|
- pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
- """
|
|
|
- model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
|
|
|
- if pretrained:
|
|
|
- # strict = False as we don't need fc layer params.
|
|
|
- model.load_state_dict(model_zoo.load_url(model_urls['resnet18']), strict=False)
|
|
|
- return model
|
|
|
-
|
|
|
-def resnet34(pretrained=False, **kwargs):
|
|
|
- """Constructs a ResNet-34 model.
|
|
|
-
|
|
|
- Args:
|
|
|
- pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
- """
|
|
|
- model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
|
|
|
- if pretrained:
|
|
|
- model.load_state_dict(model_zoo.load_url(model_urls['resnet34']), strict=False)
|
|
|
- return model
|
|
|
-
|
|
|
-def resnet50(pretrained=False, **kwargs):
|
|
|
- """Constructs a ResNet-50 model.
|
|
|
-
|
|
|
- Args:
|
|
|
- pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
- """
|
|
|
- model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
|
|
|
- if pretrained:
|
|
|
- model.load_state_dict(model_zoo.load_url(model_urls['resnet50']), strict=False)
|
|
|
- return model
|
|
|
-
|
|
|
-def resnet101(pretrained=False, **kwargs):
|
|
|
- """Constructs a ResNet-101 model.
|
|
|
-
|
|
|
- Args:
|
|
|
- pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
- """
|
|
|
- model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
|
|
|
- if pretrained:
|
|
|
- model.load_state_dict(model_zoo.load_url(model_urls['resnet101']), strict=False)
|
|
|
- return model
|
|
|
-
|
|
|
-def resnet152(pretrained=False, **kwargs):
|
|
|
- """Constructs a ResNet-152 model.
|
|
|
-
|
|
|
- Args:
|
|
|
- pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
- """
|
|
|
- model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
|
|
|
- if pretrained:
|
|
|
- model.load_state_dict(model_zoo.load_url(model_urls['resnet152']), strict=False)
|
|
|
- return model
|
|
|
-
|
|
|
-
|
|
|
-if __name__=='__main__':
|
|
|
- import time
|
|
|
- from thop import profile
|
|
|
-
|
|
|
- # Build backbone
|
|
|
- model, _ = build_resnet(model_name='resnet18')
|
|
|
-
|
|
|
- # Inference
|
|
|
- x = torch.randn(1, 3, 640, 640)
|
|
|
- t0 = time.time()
|
|
|
- output = model(x)
|
|
|
- t1 = time.time()
|
|
|
- print('Time: ', t1 - t0)
|
|
|
- for out in output:
|
|
|
- print(out.shape)
|
|
|
-
|
|
|
- print('==============================')
|
|
|
- flops, params = profile(model, inputs=(x, ), verbose=False)
|
|
|
- print('==============================')
|
|
|
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
|
|
|
- print('Params : {:.2f} M'.format(params / 1e6))
|