yolov3_pred.py 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158
  1. import torch
  2. import torch.nn as nn
  3. from typing import List
  4. # -------------------- Detection Pred Layer --------------------
  5. ## Single-level pred layer
  6. class DetPredLayer(nn.Module):
  7. def __init__(self,
  8. cls_dim :int,
  9. reg_dim :int,
  10. stride :int,
  11. num_classes :int,
  12. anchor_sizes :List,
  13. ):
  14. super().__init__()
  15. # --------- Basic Parameters ----------
  16. self.stride = stride
  17. self.cls_dim = cls_dim
  18. self.reg_dim = reg_dim
  19. self.num_classes = num_classes
  20. # ------------------- Anchor box -------------------
  21. self.anchor_size = torch.as_tensor(anchor_sizes).float().view(-1, 2) # [A, 2]
  22. self.num_anchors = self.anchor_size.shape[0]
  23. # --------- Network Parameters ----------
  24. self.obj_pred = nn.Conv2d(self.cls_dim, 1 * self.num_anchors, kernel_size=1)
  25. self.cls_pred = nn.Conv2d(self.cls_dim, num_classes * self.num_anchors, kernel_size=1)
  26. self.reg_pred = nn.Conv2d(self.reg_dim, 4 * self.num_anchors, kernel_size=1)
  27. self.init_bias()
  28. def init_bias(self):
  29. # Init bias
  30. init_prob = 0.01
  31. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  32. # obj pred
  33. b = self.obj_pred.bias.view(1, -1)
  34. b.data.fill_(bias_value.item())
  35. self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  36. # cls pred
  37. b = self.cls_pred.bias.view(1, -1)
  38. b.data.fill_(bias_value.item())
  39. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  40. # reg pred
  41. b = self.reg_pred.bias.view(-1, )
  42. b.data.fill_(1.0)
  43. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  44. def generate_anchors(self, fmp_size):
  45. """
  46. fmp_size: (List) [H, W]
  47. """
  48. # 特征图的宽和高
  49. fmp_h, fmp_w = fmp_size
  50. # 生成网格的x坐标和y坐标
  51. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  52. # 将xy两部分的坐标拼起来:[H, W, 2] -> [HW, 2]
  53. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  54. # [HW, 2] -> [HW, A, 2] -> [M, 2], M=HWA
  55. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  56. anchor_xy = anchor_xy.view(-1, 2)
  57. # [A, 2] -> [1, A, 2] -> [HW, A, 2] -> [M, 2], M=HWA
  58. anchor_wh = self.anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  59. anchor_wh = anchor_wh.view(-1, 2)
  60. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  61. return anchors
  62. def forward(self, cls_feat, reg_feat):
  63. # 预测层
  64. obj_pred = self.obj_pred(cls_feat)
  65. cls_pred = self.cls_pred(cls_feat)
  66. reg_pred = self.reg_pred(reg_feat)
  67. # 生成网格坐标
  68. B, _, H, W = cls_pred.size()
  69. fmp_size = [H, W]
  70. anchors = self.generate_anchors(fmp_size)
  71. anchors = anchors.to(cls_pred.device)
  72. # 对 pred 的size做一些view调整,便于后续的处理
  73. # [B, C*A, H, W] -> [B, H, W, C*A] -> [B, H*W*A, C]
  74. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  75. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  76. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  77. # 解算边界框坐标
  78. cxcy_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride
  79. bwbh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  80. pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
  81. pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
  82. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  83. # output dict
  84. outputs = {"pred_obj": obj_pred, # (torch.Tensor) [B, M, 1]
  85. "pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
  86. "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
  87. "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
  88. "anchors" : anchors, # (torch.Tensor) [M, 2]
  89. "fmp_size": fmp_size,
  90. "stride" : self.stride, # (Int)
  91. }
  92. return outputs
  93. ## Multi-level pred layer
  94. class Yolov3DetPredLayer(nn.Module):
  95. def __init__(self, cfg):
  96. super().__init__()
  97. # --------- Basic Parameters ----------
  98. self.cfg = cfg
  99. # ----------- Network Parameters -----------
  100. ## pred layers
  101. self.multi_level_preds = nn.ModuleList(
  102. [DetPredLayer(cls_dim = cfg.head_dim,
  103. reg_dim = cfg.head_dim,
  104. stride = cfg.out_stride[level],
  105. anchor_sizes = cfg.anchor_size[level],
  106. num_classes = cfg.num_classes,)
  107. for level in range(cfg.num_levels)
  108. ])
  109. def forward(self, cls_feats, reg_feats):
  110. all_anchors = []
  111. all_strides = []
  112. all_fmp_sizes = []
  113. all_obj_preds = []
  114. all_cls_preds = []
  115. all_reg_preds = []
  116. all_box_preds = []
  117. for level in range(self.cfg.num_levels):
  118. # -------------- Single-level prediction --------------
  119. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  120. # collect results
  121. all_obj_preds.append(outputs["pred_obj"])
  122. all_cls_preds.append(outputs["pred_cls"])
  123. all_reg_preds.append(outputs["pred_reg"])
  124. all_box_preds.append(outputs["pred_box"])
  125. all_fmp_sizes.append(outputs["fmp_size"])
  126. all_anchors.append(outputs["anchors"])
  127. # output dict
  128. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  129. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  130. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  131. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  132. "fmp_sizes": all_fmp_sizes, # List(Tensor) [M, 1]
  133. "anchors": all_anchors, # List(Tensor) [M, 2]
  134. "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
  135. }
  136. return outputs