|
@@ -1,112 +1,133 @@
|
|
|
|
|
+import math
|
|
|
import torch
|
|
import torch
|
|
|
import torch.nn as nn
|
|
import torch.nn as nn
|
|
|
from typing import List
|
|
from typing import List
|
|
|
|
|
|
|
|
try:
|
|
try:
|
|
|
- from .modules import ConvModule
|
|
|
|
|
|
|
+ from .modules import ConvModule, DflLayer
|
|
|
except:
|
|
except:
|
|
|
- from modules import ConvModule
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
-# -------------------- Detection Head --------------------
|
|
|
|
|
-## Single-level Detection Head
|
|
|
|
|
-class DetHead(nn.Module):
|
|
|
|
|
- def __init__(self,
|
|
|
|
|
- in_dim :int = 256,
|
|
|
|
|
- cls_head_dim :int = 256,
|
|
|
|
|
- reg_head_dim :int = 256,
|
|
|
|
|
- num_cls_head :int = 2,
|
|
|
|
|
- num_reg_head :int = 2,
|
|
|
|
|
- ):
|
|
|
|
|
- super().__init__()
|
|
|
|
|
- # --------- Basic Parameters ----------
|
|
|
|
|
- self.in_dim = in_dim
|
|
|
|
|
- self.num_cls_head = num_cls_head
|
|
|
|
|
- self.num_reg_head = num_reg_head
|
|
|
|
|
-
|
|
|
|
|
- # --------- Network Parameters ----------
|
|
|
|
|
- ## classification head
|
|
|
|
|
- cls_feats = []
|
|
|
|
|
- self.cls_head_dim = cls_head_dim
|
|
|
|
|
- for i in range(num_cls_head):
|
|
|
|
|
- if i == 0:
|
|
|
|
|
- cls_feats.append(nn.Sequential(
|
|
|
|
|
- ConvModule(in_dim, in_dim, kernel_size=3, stride=1, groups=in_dim),
|
|
|
|
|
- ConvModule(in_dim, self.cls_head_dim, kernel_size=1),
|
|
|
|
|
- ))
|
|
|
|
|
- else:
|
|
|
|
|
- cls_feats.append(nn.Sequential(
|
|
|
|
|
- ConvModule(self.cls_head_dim, self.cls_head_dim, kernel_size=3, stride=1, groups=self.cls_head_dim),
|
|
|
|
|
- ConvModule(self.cls_head_dim, self.cls_head_dim, kernel_size=1),
|
|
|
|
|
- ))
|
|
|
|
|
-
|
|
|
|
|
- ## bbox regression head
|
|
|
|
|
- reg_feats = []
|
|
|
|
|
- self.reg_head_dim = reg_head_dim
|
|
|
|
|
- for i in range(num_reg_head):
|
|
|
|
|
- if i == 0:
|
|
|
|
|
- reg_feats.append(ConvModule(in_dim, self.reg_head_dim, kernel_size=3, stride=1))
|
|
|
|
|
- else:
|
|
|
|
|
- reg_feats.append(ConvModule(self.reg_head_dim, self.reg_head_dim, kernel_size=3, stride=1))
|
|
|
|
|
-
|
|
|
|
|
- self.cls_feats = nn.Sequential(*cls_feats)
|
|
|
|
|
- self.reg_feats = nn.Sequential(*reg_feats)
|
|
|
|
|
|
|
+ from modules import ConvModule, DflLayer
|
|
|
|
|
|
|
|
- self.init_weights()
|
|
|
|
|
-
|
|
|
|
|
- def init_weights(self):
|
|
|
|
|
- """Initialize the parameters."""
|
|
|
|
|
- for m in self.modules():
|
|
|
|
|
- if isinstance(m, torch.nn.Conv2d):
|
|
|
|
|
- m.reset_parameters()
|
|
|
|
|
|
|
|
|
|
- def forward(self, x):
|
|
|
|
|
- """
|
|
|
|
|
- in_feats: (Tensor) [B, C, H, W]
|
|
|
|
|
- """
|
|
|
|
|
- cls_feats = self.cls_feats(x)
|
|
|
|
|
- reg_feats = self.reg_feats(x)
|
|
|
|
|
-
|
|
|
|
|
- return cls_feats, reg_feats
|
|
|
|
|
-
|
|
|
|
|
-## Multi-level Detection Head
|
|
|
|
|
|
|
+# YOLO11 detection head
|
|
|
class Yolo11DetHead(nn.Module):
|
|
class Yolo11DetHead(nn.Module):
|
|
|
- def __init__(self, cfg, in_dims: List = [256, 512, 1024]):
|
|
|
|
|
|
|
+ def __init__(self, cfg, fpn_dims: List = [64, 128, 245]):
|
|
|
super().__init__()
|
|
super().__init__()
|
|
|
- self.num_levels = len(cfg.out_stride)
|
|
|
|
|
- ## ----------- Network Parameters -----------
|
|
|
|
|
- self.multi_level_heads = nn.ModuleList(
|
|
|
|
|
- [DetHead(in_dim = in_dims[level],
|
|
|
|
|
- cls_head_dim = max(in_dims[0], min(cfg.num_classes, 128)),
|
|
|
|
|
- reg_head_dim = max(in_dims[0]//4, 16, 4*cfg.reg_max),
|
|
|
|
|
- num_cls_head = cfg.num_cls_head,
|
|
|
|
|
- num_reg_head = cfg.num_reg_head,
|
|
|
|
|
- ) for level in range(self.num_levels)])
|
|
|
|
|
- # --------- Basic Parameters ----------
|
|
|
|
|
- self.in_dims = in_dims
|
|
|
|
|
- self.cls_head_dim = self.multi_level_heads[0].cls_head_dim
|
|
|
|
|
- self.reg_head_dim = self.multi_level_heads[0].reg_head_dim
|
|
|
|
|
-
|
|
|
|
|
- def forward(self, feats):
|
|
|
|
|
|
|
+ self.out_stride = cfg.out_stride
|
|
|
|
|
+ self.reg_max = cfg.reg_max
|
|
|
|
|
+ self.num_classes = cfg.num_classes
|
|
|
|
|
+
|
|
|
|
|
+ self.cls_dim = max(fpn_dims[0], min(cfg.num_classes, 128))
|
|
|
|
|
+ self.reg_dim = max(fpn_dims[0]//4, 16, 4*cfg.reg_max)
|
|
|
|
|
+
|
|
|
|
|
+ # classification head
|
|
|
|
|
+ self.cls_heads = nn.ModuleList(
|
|
|
|
|
+ nn.Sequential(
|
|
|
|
|
+ nn.Sequential(ConvModule(dim, dim, kernel_size=3, stride=1, groups=dim),
|
|
|
|
|
+ ConvModule(dim, self.cls_dim, kernel_size=1)),
|
|
|
|
|
+ nn.Sequential(ConvModule(self.cls_dim, self.cls_dim, kernel_size=3, stride=1, groups=self.cls_dim),
|
|
|
|
|
+ ConvModule(self.cls_dim, self.cls_dim, kernel_size=1)),
|
|
|
|
|
+ nn.Conv2d(self.cls_dim, cfg.num_classes, kernel_size=1),
|
|
|
|
|
+ )
|
|
|
|
|
+ for dim in fpn_dims
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ # bbox regression head
|
|
|
|
|
+ self.reg_heads = nn.ModuleList(
|
|
|
|
|
+ nn.Sequential(
|
|
|
|
|
+ ConvModule(dim, self.reg_dim, kernel_size=3, stride=1),
|
|
|
|
|
+ ConvModule(self.reg_dim, self.reg_dim, kernel_size=3, stride=1),
|
|
|
|
|
+ nn.Conv2d(self.reg_dim, 4*cfg.reg_max, kernel_size=1),
|
|
|
|
|
+ )
|
|
|
|
|
+ for dim in fpn_dims
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ # DFL layer for decoding bbox
|
|
|
|
|
+ self.dfl_layer = DflLayer(cfg.reg_max)
|
|
|
|
|
+ for p in self.dfl_layer.parameters():
|
|
|
|
|
+ p.requires_grad = False
|
|
|
|
|
+
|
|
|
|
|
+ self.init_bias()
|
|
|
|
|
+
|
|
|
|
|
+ def init_bias(self):
|
|
|
|
|
+ # cls pred
|
|
|
|
|
+ for i, m in enumerate(self.cls_heads):
|
|
|
|
|
+ b = m[-1].bias.view(1, -1)
|
|
|
|
|
+ b.data.fill_(math.log(5 / self.num_classes / (640. / self.out_stride[i]) ** 2))
|
|
|
|
|
+ m[-1].bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
|
|
|
+
|
|
|
|
|
+ # reg pred
|
|
|
|
|
+ for m in self.reg_heads:
|
|
|
|
|
+ b = m[-1].bias.view(-1, )
|
|
|
|
|
+ b.data.fill_(1.0)
|
|
|
|
|
+ m[-1].bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
|
|
|
+
|
|
|
|
|
+ w = m[-1].weight
|
|
|
|
|
+ w.data.fill_(0.)
|
|
|
|
|
+ m[-1].weight = torch.nn.Parameter(w, requires_grad=True)
|
|
|
|
|
+
|
|
|
|
|
+ def generate_anchors(self, fmp_size, level):
|
|
|
"""
|
|
"""
|
|
|
- feats: List[(Tensor)] [[B, C, H, W], ...]
|
|
|
|
|
|
|
+ fmp_size: (List) [H, W]
|
|
|
"""
|
|
"""
|
|
|
- cls_feats = []
|
|
|
|
|
- reg_feats = []
|
|
|
|
|
- for feat, head in zip(feats, self.multi_level_heads):
|
|
|
|
|
- # ---------------- Pred ----------------
|
|
|
|
|
- cls_feat, reg_feat = head(feat)
|
|
|
|
|
-
|
|
|
|
|
- cls_feats.append(cls_feat)
|
|
|
|
|
- reg_feats.append(reg_feat)
|
|
|
|
|
-
|
|
|
|
|
- return cls_feats, reg_feats
|
|
|
|
|
|
|
+ # generate grid cells
|
|
|
|
|
+ fmp_h, fmp_w = fmp_size
|
|
|
|
|
+ anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
|
|
|
|
|
+ # [H, W, 2] -> [HW, 2]
|
|
|
|
|
+ anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
|
|
|
|
|
+ anchors += 0.5 # add center offset
|
|
|
|
|
+ anchors *= self.out_stride[level]
|
|
|
|
|
+
|
|
|
|
|
+ return anchors
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, fpn_feats):
|
|
|
|
|
+ anchors = []
|
|
|
|
|
+ strides = []
|
|
|
|
|
+ cls_preds = []
|
|
|
|
|
+ reg_preds = []
|
|
|
|
|
+ box_preds = []
|
|
|
|
|
+
|
|
|
|
|
+ for lvl, (feat, cls_head, reg_head) in enumerate(zip(fpn_feats, self.cls_heads, self.reg_heads)):
|
|
|
|
|
+ bs, c, h, w = feat.size()
|
|
|
|
|
+ device = feat.device
|
|
|
|
|
+
|
|
|
|
|
+ # Prediction
|
|
|
|
|
+ cls_pred = cls_head(feat)
|
|
|
|
|
+ reg_pred = reg_head(feat)
|
|
|
|
|
+
|
|
|
|
|
+ # [bs, c, h, w] -> [bs, c, hw] -> [bs, hw, c]
|
|
|
|
|
+ cls_pred = cls_pred.flatten(2).permute(0, 2, 1).contiguous()
|
|
|
|
|
+ reg_pred = reg_pred.flatten(2).permute(0, 2, 1).contiguous()
|
|
|
|
|
+
|
|
|
|
|
+ # anchor points: [M, 2]
|
|
|
|
|
+ anchor = self.generate_anchors(fmp_size=[h, w], level=lvl).to(device)
|
|
|
|
|
+ stride = torch.ones_like(anchor[..., :1]) * self.out_stride[lvl]
|
|
|
|
|
+
|
|
|
|
|
+ # Decode bbox coords
|
|
|
|
|
+ box_pred = self.dfl_layer(reg_pred, anchor[None], self.out_stride[lvl])
|
|
|
|
|
+
|
|
|
|
|
+ # collect results
|
|
|
|
|
+ anchors.append(anchor)
|
|
|
|
|
+ strides.append(stride)
|
|
|
|
|
+ cls_preds.append(cls_pred)
|
|
|
|
|
+ reg_preds.append(reg_pred)
|
|
|
|
|
+ box_preds.append(box_pred)
|
|
|
|
|
+
|
|
|
|
|
+ # output dict
|
|
|
|
|
+ outputs = {"pred_cls": cls_preds, # List(Tensor) [B, M, C]
|
|
|
|
|
+ "pred_reg": reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
|
|
|
|
|
+ "pred_box": box_preds, # List(Tensor) [B, M, 4]
|
|
|
|
|
+ "anchors": anchors, # List(Tensor) [M, 2]
|
|
|
|
|
+ "stride_tensors": strides, # List(Tensor) [M, 1]
|
|
|
|
|
+ "strides": self.out_stride, # List(Int) = [8, 16, 32]
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ return outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__=='__main__':
|
|
if __name__=='__main__':
|
|
|
- import time
|
|
|
|
|
from thop import profile
|
|
from thop import profile
|
|
|
-
|
|
|
|
|
|
|
+
|
|
|
# YOLO11-Base config
|
|
# YOLO11-Base config
|
|
|
class Yolo11BaseConfig(object):
|
|
class Yolo11BaseConfig(object):
|
|
|
def __init__(self) -> None:
|
|
def __init__(self) -> None:
|
|
@@ -118,32 +139,24 @@ if __name__=='__main__':
|
|
|
self.out_stride = [8, 16, 32]
|
|
self.out_stride = [8, 16, 32]
|
|
|
self.max_stride = 32
|
|
self.max_stride = 32
|
|
|
self.num_levels = 3
|
|
self.num_levels = 3
|
|
|
- ## Head
|
|
|
|
|
- self.num_cls_head = 2
|
|
|
|
|
- self.num_reg_head = 2
|
|
|
|
|
|
|
+ self.num_classes = 80
|
|
|
|
|
|
|
|
cfg = Yolo11BaseConfig()
|
|
cfg = Yolo11BaseConfig()
|
|
|
- cfg.num_classes = 20
|
|
|
|
|
|
|
|
|
|
- # Build a head
|
|
|
|
|
- fpn_dims = [128, 256, 512]
|
|
|
|
|
- pyramid_feats = [torch.randn(1, fpn_dims[0], 80, 80),
|
|
|
|
|
- torch.randn(1, fpn_dims[1], 40, 40),
|
|
|
|
|
- torch.randn(1, fpn_dims[2], 20, 20)]
|
|
|
|
|
- head = Yolo11DetHead(cfg, fpn_dims)
|
|
|
|
|
|
|
+ # Random data
|
|
|
|
|
+ fpn_dims = [256, 512, 512]
|
|
|
|
|
+ x = [torch.randn(1, fpn_dims[0], 80, 80),
|
|
|
|
|
+ torch.randn(1, fpn_dims[1], 40, 40),
|
|
|
|
|
+ torch.randn(1, fpn_dims[2], 20, 20)]
|
|
|
|
|
|
|
|
|
|
+ # Neck model
|
|
|
|
|
+ model = Yolo11DetHead(cfg, fpn_dims)
|
|
|
|
|
|
|
|
# Inference
|
|
# Inference
|
|
|
- t0 = time.time()
|
|
|
|
|
- cls_feats, reg_feats = head(pyramid_feats)
|
|
|
|
|
- t1 = time.time()
|
|
|
|
|
- print('Time: ', t1 - t0)
|
|
|
|
|
- print("====== Yolo11 Head output ======")
|
|
|
|
|
- for level, (cls_f, reg_f) in enumerate(zip(cls_feats, reg_feats)):
|
|
|
|
|
- print("- Level-{} : ".format(level), cls_f.shape, reg_f.shape)
|
|
|
|
|
-
|
|
|
|
|
- flops, params = profile(head, inputs=(pyramid_feats, ), verbose=False)
|
|
|
|
|
- print('==============================')
|
|
|
|
|
|
|
+ outputs = model(x)
|
|
|
|
|
+
|
|
|
|
|
+ print('============ FLOPs & Params ===========')
|
|
|
|
|
+ flops, params = profile(model, inputs=(x, ), verbose=False)
|
|
|
print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
|
|
print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
|
|
|
print('Params : {:.2f} M'.format(params / 1e6))
|
|
print('Params : {:.2f} M'.format(params / 1e6))
|
|
|
|
|
|