yolo11_config.py 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209
  1. # yolo Config
  2. def build_yolo11_config(args):
  3. if args.model == 'yolo11_n':
  4. return Yolo11NConfig()
  5. elif args.model == 'yolo11_s':
  6. return Yolo11SConfig()
  7. elif args.model == 'yolo11_m':
  8. return Yolo11MConfig()
  9. elif args.model == 'yolo11_l':
  10. return Yolo11LConfig()
  11. elif args.model == 'yolo11_x':
  12. return Yolo11XConfig()
  13. else:
  14. raise NotImplementedError("No config for model: {}".format(args.model))
  15. # YOLO11-Base config
  16. class Yolo11BaseConfig(object):
  17. def __init__(self) -> None:
  18. # ---------------- Model config ----------------
  19. self.model_scale = "l"
  20. self.width = 1.0
  21. self.depth = 1.0
  22. self.ratio = 1.0
  23. self.reg_max = 16
  24. self.out_stride = [8, 16, 32]
  25. self.max_stride = 32
  26. # ---------------- Post-process config ----------------
  27. ## Post process
  28. self.val_topk = 1000
  29. self.val_conf_thresh = 0.001
  30. self.val_nms_thresh = 0.7
  31. self.test_topk = 100
  32. self.test_conf_thresh = 0.2
  33. self.test_nms_thresh = 0.5
  34. # ---------------- Assignment config ----------------
  35. ## Matcher
  36. self.tal_topk_candidates = 10
  37. self.tal_alpha = 0.5
  38. self.tal_beta = 6.0
  39. ## Loss weight
  40. self.loss_cls = 0.5
  41. self.loss_box = 7.5
  42. self.loss_dfl = 1.5
  43. # ---------------- ModelEMA config ----------------
  44. self.use_ema = True
  45. self.ema_decay = 0.9998
  46. self.ema_tau = 2000
  47. # ---------------- Optimizer config ----------------
  48. self.trainer = 'yolo'
  49. self.optimizer = 'adamw'
  50. self.base_lr = 0.001 # base_lr = per_image_lr * batch_size
  51. self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
  52. self.batch_size_base = 64
  53. self.momentum = 0.9
  54. self.weight_decay = 0.05
  55. self.clip_max_norm = 35.0
  56. self.warmup_bias_lr = 0.1
  57. self.warmup_momentum = 0.8
  58. # ---------------- Lr Scheduler config ----------------
  59. self.warmup_epoch = 3
  60. self.lr_scheduler = "cosine"
  61. self.max_epoch = 500
  62. self.eval_epoch = 10
  63. self.no_aug_epoch = 20
  64. # ---------------- Data process config ----------------
  65. self.aug_type = 'yolo'
  66. self.mosaic_prob = 0.0
  67. self.mixup_prob = 0.0
  68. self.copy_paste = 0.0 # approximated by the YOLOX's mixup
  69. self.multi_scale = [0.5, 1.5] # multi scale: [img_size * 0.5, img_size * 1.5]
  70. ## Pixel mean & std
  71. self.pixel_mean = [0., 0., 0.]
  72. self.pixel_std = [255., 255., 255.]
  73. ## Transforms
  74. self.train_img_size = 640
  75. self.test_img_size = 640
  76. self.affine_params = {
  77. 'degrees': 0.0,
  78. 'translate': 0.2,
  79. 'scale': [0.1, 2.0],
  80. 'shear': 0.0,
  81. 'perspective': 0.0,
  82. 'hsv_h': 0.015,
  83. 'hsv_s': 0.7,
  84. 'hsv_v': 0.4,
  85. }
  86. def print_config(self):
  87. config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
  88. for k, v in config_dict.items():
  89. print("{} : {}".format(k, v))
  90. # YOLO11-N
  91. class Yolo11NConfig(Yolo11BaseConfig):
  92. def __init__(self) -> None:
  93. super().__init__()
  94. # ---------------- Model config ----------------
  95. self.model_scale = "n"
  96. self.width = 0.25
  97. self.depth = 0.50
  98. self.ratio = 2.0
  99. # ---------------- Data process config ----------------
  100. self.mosaic_prob = 1.0
  101. self.mixup_prob = 0.0
  102. self.copy_paste = 0.0
  103. # YOLO11-S
  104. class Yolo11SConfig(Yolo11BaseConfig):
  105. def __init__(self) -> None:
  106. super().__init__()
  107. # ---------------- Model config ----------------
  108. self.model_scale = "s"
  109. self.width = 0.50
  110. self.depth = 0.50
  111. self.ratio = 2.0
  112. # ---------------- Data process config ----------------
  113. self.mosaic_prob = 1.0
  114. self.mixup_prob = 0.0
  115. self.copy_paste = 1.0
  116. # YOLO11-M
  117. class Yolo11MConfig(Yolo11BaseConfig):
  118. def __init__(self) -> None:
  119. super().__init__()
  120. # ---------------- Model config ----------------
  121. self.model_scale = "m"
  122. self.width = 1.0
  123. self.depth = 0.5
  124. self.ratio = 1.0
  125. # ---------------- Data process config ----------------
  126. self.mosaic_prob = 1.0
  127. self.mixup_prob = 0.1
  128. self.copy_paste = 1.0
  129. # YOLO11-L
  130. class Yolo11LConfig(Yolo11BaseConfig):
  131. def __init__(self) -> None:
  132. super().__init__()
  133. # ---------------- Model config ----------------
  134. self.model_scale = "l"
  135. self.width = 1.0
  136. self.depth = 1.0
  137. self.ratio = 1.0
  138. # ---------------- Data process config ----------------
  139. self.mosaic_prob = 1.0
  140. self.mixup_prob = 0.1
  141. self.copy_paste = 1.0
  142. # ---------------- ModelEMA config ----------------
  143. self.use_ema = True
  144. self.ema_decay = 0.9999
  145. self.ema_tau = 2000
  146. # ---------------- Optimizer config ----------------
  147. self.trainer = 'yolo'
  148. self.optimizer = 'sgd'
  149. self.base_lr = 0.01 # base_lr = per_image_lr * batch_size
  150. self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
  151. self.batch_size_base = 64
  152. self.momentum = 0.9
  153. self.weight_decay = 0.0005
  154. self.clip_max_norm = 10.0
  155. self.warmup_bias_lr = 0.1
  156. self.warmup_momentum = 0.8
  157. # YOLO11-X
  158. class Yolo11XConfig(Yolo11BaseConfig):
  159. def __init__(self) -> None:
  160. super().__init__()
  161. # ---------------- Model config ----------------
  162. self.model_scale = "x"
  163. self.width = 1.50
  164. self.depth = 1.0
  165. self.ratio = 1.0
  166. # ---------------- Data process config ----------------
  167. self.mosaic_prob = 1.0
  168. self.mixup_prob = 0.1
  169. self.copy_paste = 1.0
  170. # ---------------- ModelEMA config ----------------
  171. self.use_ema = True
  172. self.ema_decay = 0.9999
  173. self.ema_tau = 2000
  174. # ---------------- Optimizer config ----------------
  175. self.trainer = 'yolo'
  176. self.optimizer = 'sgd'
  177. self.base_lr = 0.01 # base_lr = per_image_lr * batch_size
  178. self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
  179. self.batch_size_base = 64
  180. self.momentum = 0.9
  181. self.weight_decay = 0.0005
  182. self.clip_max_norm = 10.0
  183. self.warmup_bias_lr = 0.1
  184. self.warmup_momentum = 0.8