|
|
@@ -1,348 +0,0 @@
|
|
|
-"""Adapted from:
|
|
|
- @longcw faster_rcnn_pytorch: https://github.com/longcw/faster_rcnn_pytorch
|
|
|
- @rbgirshick py-faster-rcnn https://github.com/rbgirshick/py-faster-rcnn
|
|
|
- Licensed under The MIT License [see LICENSE for details]
|
|
|
-"""
|
|
|
-
|
|
|
-from dataset.voc import VOCDataset, VOC_CLASSES
|
|
|
-import os
|
|
|
-import time
|
|
|
-import numpy as np
|
|
|
-import pickle
|
|
|
-import xml.etree.ElementTree as ET
|
|
|
-
|
|
|
-from utils.box_ops import rescale_bboxes
|
|
|
-
|
|
|
-
|
|
|
-class VOCAPIEvaluator():
|
|
|
- """ VOC AP Evaluation class """
|
|
|
- def __init__(self,
|
|
|
- cfg,
|
|
|
- data_dir,
|
|
|
- device,
|
|
|
- transform,
|
|
|
- set_type='test',
|
|
|
- year='2007',
|
|
|
- display=False):
|
|
|
- # basic config
|
|
|
- self.data_dir = data_dir
|
|
|
- self.device = device
|
|
|
- self.labelmap = VOC_CLASSES
|
|
|
- self.set_type = set_type
|
|
|
- self.year = year
|
|
|
- self.display = display
|
|
|
- self.map = 0.
|
|
|
-
|
|
|
- # transform
|
|
|
- self.transform = transform
|
|
|
-
|
|
|
- # path
|
|
|
- time_stamp = time.strftime('%Y-%m-%d_%H-%M-%S',time.localtime(time.time()))
|
|
|
- self.devkit_path = os.path.join(data_dir, 'VOC' + year)
|
|
|
- self.annopath = os.path.join(data_dir, 'VOC2007', 'Annotations', '%s.xml')
|
|
|
- self.imgpath = os.path.join(data_dir, 'VOC2007', 'JPEGImages', '%s.jpg')
|
|
|
- self.imgsetpath = os.path.join(data_dir, 'VOC2007', 'ImageSets', 'Main', set_type+'.txt')
|
|
|
- self.output_dir = self.get_output_dir('det_results/eval/voc_eval/{}'.format(time_stamp), self.set_type)
|
|
|
-
|
|
|
- # dataset
|
|
|
- self.dataset = VOCDataset(
|
|
|
- cfg=cfg,
|
|
|
- data_dir=data_dir,
|
|
|
- image_set=[('2007', set_type)],
|
|
|
- is_train=False)
|
|
|
-
|
|
|
- def evaluate(self, net):
|
|
|
- net.eval()
|
|
|
- num_images = len(self.dataset)
|
|
|
- # all detections are collected into:
|
|
|
- # all_boxes[cls][image] = N x 5 array of detections in
|
|
|
- # (x1, y1, x2, y2, score)
|
|
|
- self.all_boxes = [[[] for _ in range(num_images)]
|
|
|
- for _ in range(len(self.labelmap))]
|
|
|
-
|
|
|
- # timers
|
|
|
- det_file = os.path.join(self.output_dir, 'detections.pkl')
|
|
|
-
|
|
|
- for i in range(num_images):
|
|
|
- img, _ = self.dataset.pull_image(i)
|
|
|
- orig_h, orig_w = img.shape[:2]
|
|
|
-
|
|
|
- # preprocess
|
|
|
- x, _, ratio = self.transform(img)
|
|
|
- x = x.unsqueeze(0).to(self.device)
|
|
|
-
|
|
|
- # forward
|
|
|
- t0 = time.time()
|
|
|
- outputs = net(x)
|
|
|
- scores = outputs['scores']
|
|
|
- labels = outputs['labels']
|
|
|
- bboxes = outputs['bboxes']
|
|
|
- detect_time = time.time() - t0
|
|
|
-
|
|
|
- # rescale bboxes
|
|
|
- bboxes = rescale_bboxes(bboxes, [orig_w, orig_h], ratio)
|
|
|
-
|
|
|
- for j in range(len(self.labelmap)):
|
|
|
- inds = np.where(labels == j)[0]
|
|
|
- if len(inds) == 0:
|
|
|
- self.all_boxes[j][i] = np.empty([0, 5], dtype=np.float32)
|
|
|
- continue
|
|
|
- c_bboxes = bboxes[inds]
|
|
|
- c_scores = scores[inds]
|
|
|
- c_dets = np.hstack((c_bboxes,
|
|
|
- c_scores[:, np.newaxis])).astype(np.float32,
|
|
|
- copy=False)
|
|
|
- self.all_boxes[j][i] = c_dets
|
|
|
-
|
|
|
- if i % 500 == 0:
|
|
|
- print('im_detect: {:d}/{:d} {:.3f}s'.format(i + 1, num_images, detect_time))
|
|
|
-
|
|
|
- with open(det_file, 'wb') as f:
|
|
|
- pickle.dump(self.all_boxes, f, pickle.HIGHEST_PROTOCOL)
|
|
|
-
|
|
|
- print('Evaluating detections')
|
|
|
- self.evaluate_detections(self.all_boxes)
|
|
|
-
|
|
|
- print('Mean AP: ', self.map)
|
|
|
-
|
|
|
- def parse_rec(self, filename):
|
|
|
- """ Parse a PASCAL VOC xml file """
|
|
|
- tree = ET.parse(filename)
|
|
|
- objects = []
|
|
|
- for obj in tree.findall('object'):
|
|
|
- obj_struct = {}
|
|
|
- obj_struct['name'] = obj.find('name').text
|
|
|
- obj_struct['pose'] = obj.find('pose').text
|
|
|
- obj_struct['truncated'] = int(obj.find('truncated').text)
|
|
|
- obj_struct['difficult'] = int(obj.find('difficult').text)
|
|
|
- bbox = obj.find('bndbox')
|
|
|
- obj_struct['bbox'] = [int(bbox.find('xmin').text),
|
|
|
- int(bbox.find('ymin').text),
|
|
|
- int(bbox.find('xmax').text),
|
|
|
- int(bbox.find('ymax').text)]
|
|
|
- objects.append(obj_struct)
|
|
|
-
|
|
|
- return objects
|
|
|
-
|
|
|
- def get_output_dir(self, name, phase):
|
|
|
- """Return the directory where experimental artifacts are placed.
|
|
|
- If the directory does not exist, it is created.
|
|
|
- A canonical path is built using the name from an imdb and a network
|
|
|
- (if not None).
|
|
|
- """
|
|
|
- filedir = os.path.join(name, phase)
|
|
|
- if not os.path.exists(filedir):
|
|
|
- os.makedirs(filedir, exist_ok=True)
|
|
|
- return filedir
|
|
|
-
|
|
|
- def get_voc_results_file_template(self, cls):
|
|
|
- # VOCdevkit/VOC2007/results/det_test_aeroplane.txt
|
|
|
- filename = 'det_' + self.set_type + '_%s.txt' % (cls)
|
|
|
- filedir = os.path.join(self.devkit_path, 'results')
|
|
|
- if not os.path.exists(filedir):
|
|
|
- os.makedirs(filedir)
|
|
|
- path = os.path.join(filedir, filename)
|
|
|
- return path
|
|
|
-
|
|
|
- def write_voc_results_file(self, all_boxes):
|
|
|
- for cls_ind, cls in enumerate(self.labelmap):
|
|
|
- if self.display:
|
|
|
- print('Writing {:s} VOC results file'.format(cls))
|
|
|
- filename = self.get_voc_results_file_template(cls)
|
|
|
- with open(filename, 'wt') as f:
|
|
|
- for im_ind, index in enumerate(self.dataset.ids):
|
|
|
- dets = all_boxes[cls_ind][im_ind]
|
|
|
- if len(dets) == 0:
|
|
|
- continue
|
|
|
- # the VOCdevkit expects 1-based indices
|
|
|
- for k in range(dets.shape[0]):
|
|
|
- f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.
|
|
|
- format(index[1], dets[k, -1],
|
|
|
- dets[k, 0] + 1, dets[k, 1] + 1,
|
|
|
- dets[k, 2] + 1, dets[k, 3] + 1))
|
|
|
-
|
|
|
- def do_python_eval(self, use_07=True):
|
|
|
- cachedir = os.path.join(self.devkit_path, 'annotations_cache')
|
|
|
- aps = []
|
|
|
- # The PASCAL VOC metric changed in 2010
|
|
|
- use_07_metric = use_07
|
|
|
- print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
|
|
|
- if not os.path.isdir(self.output_dir):
|
|
|
- os.mkdir(self.output_dir)
|
|
|
- for i, cls in enumerate(self.labelmap):
|
|
|
- filename = self.get_voc_results_file_template(cls)
|
|
|
- rec, prec, ap = self.voc_eval(detpath=filename,
|
|
|
- classname=cls,
|
|
|
- cachedir=cachedir,
|
|
|
- ovthresh=0.5,
|
|
|
- use_07_metric=use_07_metric
|
|
|
- )
|
|
|
- aps += [ap]
|
|
|
- print('AP for {} = {:.4f}'.format(cls, ap))
|
|
|
- with open(os.path.join(self.output_dir, cls + '_pr.pkl'), 'wb') as f:
|
|
|
- pickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
|
|
|
- if self.display:
|
|
|
- self.map = np.mean(aps)
|
|
|
- print('Mean AP = {:.4f}'.format(np.mean(aps)))
|
|
|
- print('~~~~~~~~')
|
|
|
- print('Results:')
|
|
|
- for ap in aps:
|
|
|
- print('{:.3f}'.format(ap))
|
|
|
- print('{:.3f}'.format(np.mean(aps)))
|
|
|
- print('~~~~~~~~')
|
|
|
- print('')
|
|
|
- print('--------------------------------------------------------------')
|
|
|
- print('Results computed with the **unofficial** Python eval code.')
|
|
|
- print('Results should be very close to the official MATLAB eval code.')
|
|
|
- print('--------------------------------------------------------------')
|
|
|
- else:
|
|
|
- self.map = np.mean(aps)
|
|
|
- print('Mean AP = {:.4f}'.format(np.mean(aps)))
|
|
|
-
|
|
|
- def voc_ap(self, rec, prec, use_07_metric=True):
|
|
|
- """ ap = voc_ap(rec, prec, [use_07_metric])
|
|
|
- Compute VOC AP given precision and recall.
|
|
|
- If use_07_metric is true, uses the
|
|
|
- VOC 07 11 point method (default:True).
|
|
|
- """
|
|
|
- if use_07_metric:
|
|
|
- # 11 point metric
|
|
|
- ap = 0.
|
|
|
- for t in np.arange(0., 1.1, 0.1):
|
|
|
- if np.sum(rec >= t) == 0:
|
|
|
- p = 0
|
|
|
- else:
|
|
|
- p = np.max(prec[rec >= t])
|
|
|
- ap = ap + p / 11.
|
|
|
- else:
|
|
|
- # correct AP calculation
|
|
|
- # first append sentinel values at the end
|
|
|
- mrec = np.concatenate(([0.], rec, [1.]))
|
|
|
- mpre = np.concatenate(([0.], prec, [0.]))
|
|
|
-
|
|
|
- # compute the precision envelope
|
|
|
- for i in range(mpre.size - 1, 0, -1):
|
|
|
- mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
|
|
|
-
|
|
|
- # to calculate area under PR curve, look for points
|
|
|
- # where X axis (recall) changes value
|
|
|
- i = np.where(mrec[1:] != mrec[:-1])[0]
|
|
|
-
|
|
|
- # and sum (\Delta recall) * prec
|
|
|
- ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
|
|
|
- return ap
|
|
|
-
|
|
|
- def voc_eval(self, detpath, classname, cachedir, ovthresh=0.5, use_07_metric=True):
|
|
|
- if not os.path.isdir(cachedir):
|
|
|
- os.mkdir(cachedir)
|
|
|
- cachefile = os.path.join(cachedir, 'annots.pkl')
|
|
|
- # read list of images
|
|
|
- with open(self.imgsetpath, 'r') as f:
|
|
|
- lines = f.readlines()
|
|
|
- imagenames = [x.strip() for x in lines]
|
|
|
- if not os.path.isfile(cachefile):
|
|
|
- # load annots
|
|
|
- recs = {}
|
|
|
- for i, imagename in enumerate(imagenames):
|
|
|
- recs[imagename] = self.parse_rec(self.annopath % (imagename))
|
|
|
- if i % 100 == 0 and self.display:
|
|
|
- print('Reading annotation for {:d}/{:d}'.format(
|
|
|
- i + 1, len(imagenames)))
|
|
|
- # save
|
|
|
- if self.display:
|
|
|
- print('Saving cached annotations to {:s}'.format(cachefile))
|
|
|
- with open(cachefile, 'wb') as f:
|
|
|
- pickle.dump(recs, f)
|
|
|
- else:
|
|
|
- # load
|
|
|
- with open(cachefile, 'rb') as f:
|
|
|
- recs = pickle.load(f)
|
|
|
-
|
|
|
- # extract gt objects for this class
|
|
|
- class_recs = {}
|
|
|
- npos = 0
|
|
|
- for imagename in imagenames:
|
|
|
- R = [obj for obj in recs[imagename] if obj['name'] == classname]
|
|
|
- bbox = np.array([x['bbox'] for x in R])
|
|
|
- difficult = np.array([x['difficult'] for x in R]).astype(np.bool_)
|
|
|
- det = [False] * len(R)
|
|
|
- npos = npos + sum(~difficult)
|
|
|
- class_recs[imagename] = {'bbox': bbox,
|
|
|
- 'difficult': difficult,
|
|
|
- 'det': det}
|
|
|
-
|
|
|
- # read dets
|
|
|
- detfile = detpath.format(classname)
|
|
|
- with open(detfile, 'r') as f:
|
|
|
- lines = f.readlines()
|
|
|
- if any(lines) == 1:
|
|
|
-
|
|
|
- splitlines = [x.strip().split(' ') for x in lines]
|
|
|
- image_ids = [x[0] for x in splitlines]
|
|
|
- confidence = np.array([float(x[1]) for x in splitlines])
|
|
|
- BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
|
|
|
-
|
|
|
- # sort by confidence
|
|
|
- sorted_ind = np.argsort(-confidence)
|
|
|
- sorted_scores = np.sort(-confidence)
|
|
|
- BB = BB[sorted_ind, :]
|
|
|
- image_ids = [image_ids[x] for x in sorted_ind]
|
|
|
-
|
|
|
- # go down dets and mark TPs and FPs
|
|
|
- nd = len(image_ids)
|
|
|
- tp = np.zeros(nd)
|
|
|
- fp = np.zeros(nd)
|
|
|
- for d in range(nd):
|
|
|
- R = class_recs[image_ids[d]]
|
|
|
- bb = BB[d, :].astype(float)
|
|
|
- ovmax = -np.inf
|
|
|
- BBGT = R['bbox'].astype(float)
|
|
|
- if BBGT.size > 0:
|
|
|
- # compute overlaps
|
|
|
- # intersection
|
|
|
- ixmin = np.maximum(BBGT[:, 0], bb[0])
|
|
|
- iymin = np.maximum(BBGT[:, 1], bb[1])
|
|
|
- ixmax = np.minimum(BBGT[:, 2], bb[2])
|
|
|
- iymax = np.minimum(BBGT[:, 3], bb[3])
|
|
|
- iw = np.maximum(ixmax - ixmin, 0.)
|
|
|
- ih = np.maximum(iymax - iymin, 0.)
|
|
|
- inters = iw * ih
|
|
|
- uni = ((bb[2] - bb[0]) * (bb[3] - bb[1]) +
|
|
|
- (BBGT[:, 2] - BBGT[:, 0]) *
|
|
|
- (BBGT[:, 3] - BBGT[:, 1]) - inters)
|
|
|
- overlaps = inters / uni
|
|
|
- ovmax = np.max(overlaps)
|
|
|
- jmax = np.argmax(overlaps)
|
|
|
-
|
|
|
- if ovmax > ovthresh:
|
|
|
- if not R['difficult'][jmax]:
|
|
|
- if not R['det'][jmax]:
|
|
|
- tp[d] = 1.
|
|
|
- R['det'][jmax] = 1
|
|
|
- else:
|
|
|
- fp[d] = 1.
|
|
|
- else:
|
|
|
- fp[d] = 1.
|
|
|
-
|
|
|
- # compute precision recall
|
|
|
- fp = np.cumsum(fp)
|
|
|
- tp = np.cumsum(tp)
|
|
|
- rec = tp / float(npos)
|
|
|
- # avoid divide by zero in case the first detection matches a difficult
|
|
|
- # ground truth
|
|
|
- prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
|
|
|
- ap = self.voc_ap(rec, prec, use_07_metric)
|
|
|
- else:
|
|
|
- rec = -1.
|
|
|
- prec = -1.
|
|
|
- ap = -1.
|
|
|
-
|
|
|
- return rec, prec, ap
|
|
|
-
|
|
|
- def evaluate_detections(self, box_list):
|
|
|
- self.write_voc_results_file(box_list)
|
|
|
- self.do_python_eval()
|
|
|
-
|
|
|
-
|
|
|
-if __name__ == '__main__':
|
|
|
- pass
|