| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- import argparse
- import torch
- # evaluators
- from evaluator.map_evaluator import MapEvaluator
- # load transform
- from dataset.build import build_dataset, build_transform
- # load some utils
- from utils.misc import load_weight
- from config import build_config
- from models import build_model
- def parse_args():
- parser = argparse.ArgumentParser(description='Real-time Object Detection LAB')
- # Basic setting
- parser.add_argument('-size', '--img_size', default=640, type=int,
- help='the max size of input image')
- parser.add_argument('--cuda', action='store_true', default=False,
- help='Use cuda')
- # Model setting
- parser.add_argument('-m', '--model', default='yolov1', type=str,
- help='build yolo')
- parser.add_argument('--weight', default=None,
- type=str, help='Trained state_dict file path to open')
- parser.add_argument('-r', '--resume', default=None, type=str,
- help='keep training')
- parser.add_argument('--fuse_conv_bn', action='store_true', default=False,
- help='fuse Conv & BN')
- # Data setting
- parser.add_argument('--root', default='/Users/liuhaoran/Desktop/python_work/object-detection/dataset/',
- help='data root')
- parser.add_argument('-d', '--dataset', default='coco',
- help='coco, voc.')
- # TTA
- parser.add_argument('-tta', '--test_aug', action='store_true', default=False,
- help='use test augmentation.')
- return parser.parse_args()
- if __name__ == '__main__':
- args = parse_args()
- # cuda
- if args.cuda:
- print('use cuda')
- device = torch.device("cuda")
- else:
- device = torch.device("cpu")
- # Dataset & Model Config
- cfg = build_config(args)
-
- # Transform
- transform = build_transform(cfg, is_train=False)
- # Dataset
- dataset = build_dataset(args, cfg, transform, is_train=False)
- # build model
- model, _ = build_model(args, cfg, is_val=True)
- # load trained weight
- model = load_weight(model, args.weight, args.fuse_conv_bn)
- model.to(device).eval()
- # evaluation
- evaluator = MapEvaluator(cfg = cfg,
- dataset_name = args.dataset,
- data_dir = args.root,
- device = device,
- transform = transform
- )
- evaluator.evaluate(model)
|