|
|
@@ -0,0 +1,214 @@
|
|
|
+import numpy as np
|
|
|
+import torch
|
|
|
+
|
|
|
+
|
|
|
+class Yolov5Matcher(object):
|
|
|
+ def __init__(self, num_classes, num_anchors, anchor_size, anchor_theshold):
|
|
|
+ self.num_classes = num_classes
|
|
|
+ self.num_anchors = num_anchors
|
|
|
+ self.anchor_theshold = anchor_theshold
|
|
|
+ # [KA, 2]
|
|
|
+ self.anchor_sizes = np.array([[anchor[0], anchor[1]]
|
|
|
+ for anchor in anchor_size])
|
|
|
+ # [KA, 4]
|
|
|
+ self.anchor_boxes = np.array([[0., 0., anchor[0], anchor[1]]
|
|
|
+ for anchor in anchor_size])
|
|
|
+
|
|
|
+ def compute_iou(self, anchor_boxes, gt_box):
|
|
|
+ """
|
|
|
+ anchor_boxes : ndarray -> [KA, 4] (cx, cy, bw, bh).
|
|
|
+ gt_box : ndarray -> [1, 4] (cx, cy, bw, bh).
|
|
|
+ """
|
|
|
+ # anchors: [KA, 4]
|
|
|
+ anchors_xyxy = np.zeros_like(anchor_boxes)
|
|
|
+ anchors_area = anchor_boxes[..., 2] * anchor_boxes[..., 3]
|
|
|
+ # convert [cx, cy, bw, bh] -> [x1, y1, x2, y2]
|
|
|
+ anchors_xyxy[..., :2] = anchor_boxes[..., :2] - anchor_boxes[..., 2:] * 0.5 # x1y1
|
|
|
+ anchors_xyxy[..., 2:] = anchor_boxes[..., :2] + anchor_boxes[..., 2:] * 0.5 # x2y2
|
|
|
+
|
|
|
+ # expand gt_box: [1, 4] -> [KA, 4]
|
|
|
+ gt_box = np.array(gt_box).reshape(-1, 4)
|
|
|
+ gt_box = np.repeat(gt_box, anchors_xyxy.shape[0], axis=0)
|
|
|
+ gt_box_area = gt_box[..., 2] * gt_box[..., 3]
|
|
|
+ # convert [cx, cy, bw, bh] -> [x1, y1, x2, y2]
|
|
|
+ gt_box_xyxy = np.zeros_like(gt_box)
|
|
|
+ gt_box_xyxy[..., :2] = gt_box[..., :2] - gt_box[..., 2:] * 0.5 # x1y1
|
|
|
+ gt_box_xyxy[..., 2:] = gt_box[..., :2] + gt_box[..., 2:] * 0.5 # x2y2
|
|
|
+
|
|
|
+ # intersection
|
|
|
+ inter_w = np.minimum(anchors_xyxy[:, 2], gt_box_xyxy[:, 2]) - \
|
|
|
+ np.maximum(anchors_xyxy[:, 0], gt_box_xyxy[:, 0])
|
|
|
+ inter_h = np.minimum(anchors_xyxy[:, 3], gt_box_xyxy[:, 3]) - \
|
|
|
+ np.maximum(anchors_xyxy[:, 1], gt_box_xyxy[:, 1])
|
|
|
+ inter_area = inter_w * inter_h
|
|
|
+
|
|
|
+ # union
|
|
|
+ union_area = anchors_area + gt_box_area - inter_area
|
|
|
+
|
|
|
+ # iou
|
|
|
+ iou = inter_area / union_area
|
|
|
+ iou = np.clip(iou, a_min=1e-10, a_max=1.0)
|
|
|
+
|
|
|
+ return iou
|
|
|
+
|
|
|
+ def iou_assignment(self, ctr_points, gt_box, fpn_strides):
|
|
|
+ # compute IoU
|
|
|
+ iou = self.compute_iou(self.anchor_boxes, gt_box)
|
|
|
+ iou_mask = (iou > 0.5)
|
|
|
+
|
|
|
+ label_assignment_results = []
|
|
|
+ if iou_mask.sum() == 0:
|
|
|
+ # We assign the anchor box with highest IoU score.
|
|
|
+ iou_ind = np.argmax(iou)
|
|
|
+
|
|
|
+ level = iou_ind // self.num_anchors # pyramid level
|
|
|
+ anchor_idx = iou_ind - level * self.num_anchors # anchor index
|
|
|
+
|
|
|
+ # get the corresponding stride
|
|
|
+ stride = fpn_strides[level]
|
|
|
+
|
|
|
+ # compute the grid cell
|
|
|
+ xc, yc = ctr_points
|
|
|
+ xc_s = xc / stride
|
|
|
+ yc_s = yc / stride
|
|
|
+ grid_x = int(xc_s)
|
|
|
+ grid_y = int(yc_s)
|
|
|
+
|
|
|
+ label_assignment_results.append([grid_x, grid_y, xc_s, yc_s, level, anchor_idx])
|
|
|
+ else:
|
|
|
+ for iou_ind, iou_m in enumerate(iou_mask):
|
|
|
+ if iou_m:
|
|
|
+ level = iou_ind // self.num_anchors # pyramid level
|
|
|
+ anchor_idx = iou_ind - level * self.num_anchors # anchor index
|
|
|
+
|
|
|
+ # get the corresponding stride
|
|
|
+ stride = fpn_strides[level]
|
|
|
+
|
|
|
+ # compute the gride cell
|
|
|
+ xc, yc = ctr_points
|
|
|
+ xc_s = xc / stride
|
|
|
+ yc_s = yc / stride
|
|
|
+ grid_x = int(xc_s)
|
|
|
+ grid_y = int(yc_s)
|
|
|
+
|
|
|
+ label_assignment_results.append([grid_x, grid_y, xc_s, yc_s, level, anchor_idx])
|
|
|
+
|
|
|
+ return label_assignment_results
|
|
|
+
|
|
|
+ def aspect_ratio_assignment(self, ctr_points, keeps, fpn_strides):
|
|
|
+ label_assignment_results = []
|
|
|
+ for keep_idx, keep in enumerate(keeps):
|
|
|
+ if keep:
|
|
|
+ level = keep_idx // self.num_anchors # pyramid level
|
|
|
+ anchor_idx = keep_idx - level * self.num_anchors # anchor index
|
|
|
+
|
|
|
+ # get the corresponding stride
|
|
|
+ stride = fpn_strides[level]
|
|
|
+
|
|
|
+ # compute the gride cell
|
|
|
+ xc, yc = ctr_points
|
|
|
+ xc_s = xc / stride
|
|
|
+ yc_s = yc / stride
|
|
|
+ grid_x = int(xc_s)
|
|
|
+ grid_y = int(yc_s)
|
|
|
+
|
|
|
+ label_assignment_results.append([grid_x, grid_y, xc_s, yc_s, level, anchor_idx])
|
|
|
+
|
|
|
+ return label_assignment_results
|
|
|
+
|
|
|
+ @torch.no_grad()
|
|
|
+ def __call__(self, fmp_sizes, fpn_strides, targets):
|
|
|
+ """
|
|
|
+ fmp_size: (List) [fmp_h, fmp_w]
|
|
|
+ fpn_strides: (List) -> [8, 16, 32, ...] stride of network output.
|
|
|
+ targets: (Dict) dict{'boxes': [...],
|
|
|
+ 'labels': [...],
|
|
|
+ 'orig_size': ...}
|
|
|
+ """
|
|
|
+ assert len(fmp_sizes) == len(fpn_strides)
|
|
|
+ # prepare
|
|
|
+ bs = len(targets)
|
|
|
+ gt_objectness = [
|
|
|
+ torch.zeros([bs, fmp_h, fmp_w, self.num_anchors, 1])
|
|
|
+ for (fmp_h, fmp_w) in fmp_sizes
|
|
|
+ ]
|
|
|
+ gt_classes = [
|
|
|
+ torch.zeros([bs, fmp_h, fmp_w, self.num_anchors, self.num_classes])
|
|
|
+ for (fmp_h, fmp_w) in fmp_sizes
|
|
|
+ ]
|
|
|
+ gt_bboxes = [
|
|
|
+ torch.zeros([bs, fmp_h, fmp_w, self.num_anchors, 4])
|
|
|
+ for (fmp_h, fmp_w) in fmp_sizes
|
|
|
+ ]
|
|
|
+
|
|
|
+ for batch_index in range(bs):
|
|
|
+ targets_per_image = targets[batch_index]
|
|
|
+ # [N,]
|
|
|
+ tgt_cls = targets_per_image["labels"].numpy()
|
|
|
+ # [N, 4]
|
|
|
+ tgt_box = targets_per_image['boxes'].numpy()
|
|
|
+
|
|
|
+ for gt_box, gt_label in zip(tgt_box, tgt_cls):
|
|
|
+ # get a bbox coords
|
|
|
+ x1, y1, x2, y2 = gt_box.tolist()
|
|
|
+ # xyxy -> cxcywh
|
|
|
+ xc, yc = (x2 + x1) * 0.5, (y2 + y1) * 0.5
|
|
|
+ bw, bh = x2 - x1, y2 - y1
|
|
|
+ gt_box = np.array([[0., 0., bw, bh]])
|
|
|
+
|
|
|
+ # check target
|
|
|
+ if bw < 1. or bh < 1.:
|
|
|
+ # invalid target
|
|
|
+ continue
|
|
|
+
|
|
|
+ # compute aspect ratio
|
|
|
+ ratios = gt_box[..., 2:] / self.anchor_sizes
|
|
|
+ keeps = np.maximum(ratios, 1 / ratios).max(-1) < self.anchor_theshold
|
|
|
+
|
|
|
+ if keeps.sum() == 0:
|
|
|
+ label_assignment_results = self.iou_assignment([xc, yc], gt_box, fpn_strides)
|
|
|
+ else:
|
|
|
+ label_assignment_results = self.aspect_ratio_assignment([xc, yc], keeps, fpn_strides)
|
|
|
+
|
|
|
+ # label assignment
|
|
|
+ for result in label_assignment_results:
|
|
|
+ # assignment
|
|
|
+ grid_x, grid_y, xc_s, yc_s, level, anchor_idx = result
|
|
|
+ stride = fpn_strides[level]
|
|
|
+ fmp_h, fmp_w = fmp_sizes[level]
|
|
|
+ # coord on the feature
|
|
|
+ x1s, y1s = x1 / stride, y1 / stride
|
|
|
+ x2s, y2s = x2 / stride, y2 / stride
|
|
|
+ # offset
|
|
|
+ off_x = xc_s - grid_x
|
|
|
+ off_y = yc_s - grid_y
|
|
|
+
|
|
|
+ if off_x <= 0.5 and off_y <= 0.5: # top left
|
|
|
+ grids = [(grid_x-1, grid_y), (grid_x, grid_y-1), (grid_x, grid_y)]
|
|
|
+ elif off_x > 0.5 and off_y <= 0.5: # top right
|
|
|
+ grids = [(grid_x+1, grid_y), (grid_x, grid_y-1), (grid_x, grid_y)]
|
|
|
+ elif off_x <= 0.5 and off_y > 0.5: # bottom left
|
|
|
+ grids = [(grid_x-1, grid_y), (grid_x, grid_y+1), (grid_x, grid_y)]
|
|
|
+ elif off_x > 0.5 and off_y > 0.5: # bottom right
|
|
|
+ grids = [(grid_x+1, grid_y), (grid_x, grid_y+1), (grid_x, grid_y)]
|
|
|
+
|
|
|
+ for (i, j) in grids:
|
|
|
+ is_in_box = (j >= y1s and j < y2s) and (i >= x1s and i < x2s)
|
|
|
+ is_valid = (j >= 0 and j < fmp_h) and (i >= 0 and i < fmp_w)
|
|
|
+
|
|
|
+ if is_in_box and is_valid:
|
|
|
+ # obj
|
|
|
+ gt_objectness[level][batch_index, j, i, anchor_idx] = 1.0
|
|
|
+ # cls
|
|
|
+ cls_ont_hot = torch.zeros(self.num_classes)
|
|
|
+ cls_ont_hot[int(gt_label)] = 1.0
|
|
|
+ gt_classes[level][batch_index, j, i, anchor_idx] = cls_ont_hot
|
|
|
+ # box
|
|
|
+ gt_bboxes[level][batch_index, j, i, anchor_idx] = torch.as_tensor([x1, y1, x2, y2])
|
|
|
+
|
|
|
+ # [B, M, C]
|
|
|
+ gt_objectness = torch.cat([gt.view(bs, -1, 1) for gt in gt_objectness], dim=1).float()
|
|
|
+ gt_classes = torch.cat([gt.view(bs, -1, self.num_classes) for gt in gt_classes], dim=1).float()
|
|
|
+ gt_bboxes = torch.cat([gt.view(bs, -1, 4) for gt in gt_bboxes], dim=1).float()
|
|
|
+
|
|
|
+ return gt_objectness, gt_classes, gt_bboxes
|