|
|
@@ -19,6 +19,7 @@ class Yolov3FPN(nn.Module):
|
|
|
self.top_down_layer_1 = ResBlock(in_dim = c5,
|
|
|
out_dim = round(512*cfg.width),
|
|
|
num_blocks = round(3*cfg.depth),
|
|
|
+ expansion = 0.5,
|
|
|
shortcut = False,
|
|
|
act_type = cfg.fpn_act,
|
|
|
norm_type = cfg.fpn_norm,
|
|
|
@@ -29,6 +30,7 @@ class Yolov3FPN(nn.Module):
|
|
|
self.top_down_layer_2 = ResBlock(in_dim = c4 + round(256*cfg.width),
|
|
|
out_dim = round(256*cfg.width),
|
|
|
num_blocks = round(3*cfg.depth),
|
|
|
+ expansion = 0.5,
|
|
|
shortcut = False,
|
|
|
act_type = cfg.fpn_act,
|
|
|
norm_type = cfg.fpn_norm,
|
|
|
@@ -39,6 +41,7 @@ class Yolov3FPN(nn.Module):
|
|
|
self.top_down_layer_3 = ResBlock(in_dim = c3 + round(128*cfg.width),
|
|
|
out_dim = round(128*cfg.width),
|
|
|
num_blocks = round(3*cfg.depth),
|
|
|
+ expansion = 0.5,
|
|
|
shortcut = False,
|
|
|
act_type = cfg.fpn_act,
|
|
|
norm_type = cfg.fpn_norm,
|
|
|
@@ -72,4 +75,5 @@ class Yolov3FPN(nn.Module):
|
|
|
out_feats_proj = []
|
|
|
for feat, layer in zip(out_feats, self.out_layers):
|
|
|
out_feats_proj.append(layer(feat))
|
|
|
+
|
|
|
return out_feats_proj
|