test.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194
  1. import argparse
  2. import cv2
  3. import os
  4. import time
  5. import numpy as np
  6. from copy import deepcopy
  7. import torch
  8. # load transform
  9. from dataset.build import build_dataset, build_transform
  10. # load some utils
  11. from utils.misc import load_weight, compute_flops
  12. from utils.box_ops import rescale_bboxes
  13. from utils.vis_tools import visualize
  14. from config import build_dataset_config, build_model_config, build_trans_config
  15. from models.detectors import build_model
  16. def parse_args():
  17. parser = argparse.ArgumentParser(description='Real-time Object Detection LAB')
  18. # Basic setting
  19. parser.add_argument('-size', '--img_size', default=640, type=int,
  20. help='the max size of input image')
  21. parser.add_argument('--show', action='store_true', default=False,
  22. help='show the visulization results.')
  23. parser.add_argument('--save', action='store_true', default=False,
  24. help='save the visulization results.')
  25. parser.add_argument('--cuda', action='store_true', default=False,
  26. help='use cuda.')
  27. parser.add_argument('--save_folder', default='det_results/', type=str,
  28. help='Dir to save results')
  29. parser.add_argument('-ws', '--window_scale', default=1.0, type=float,
  30. help='resize window of cv2 for visualization.')
  31. parser.add_argument('--resave', action='store_true', default=False,
  32. help='resave checkpoints without optimizer state dict.')
  33. # Model setting
  34. parser.add_argument('-m', '--model', default='yolov1', type=str,
  35. help='build yolo')
  36. parser.add_argument('--weight', default=None,
  37. type=str, help='Trained state_dict file path to open')
  38. parser.add_argument('-ct', '--conf_thresh', default=0.3, type=float,
  39. help='confidence threshold')
  40. parser.add_argument('-nt', '--nms_thresh', default=0.5, type=float,
  41. help='NMS threshold')
  42. parser.add_argument('--topk', default=100, type=int,
  43. help='topk candidates dets of each level before NMS')
  44. parser.add_argument("--no_decode", action="store_true", default=False,
  45. help="not decode in inference or yes")
  46. parser.add_argument('--fuse_conv_bn', action='store_true', default=False,
  47. help='fuse Conv & BN')
  48. parser.add_argument('--no_multi_labels', action='store_true', default=False,
  49. help='Perform post-process with multi-labels trick.')
  50. parser.add_argument('--nms_class_agnostic', action='store_true', default=False,
  51. help='Perform NMS operations regardless of category.')
  52. # Data setting
  53. parser.add_argument('--root', default='/Users/liuhaoran/Desktop/python_work/object-detection/dataset/',
  54. help='data root')
  55. parser.add_argument('-d', '--dataset', default='coco',
  56. help='coco, voc.')
  57. parser.add_argument('--min_box_size', default=8.0, type=float,
  58. help='min size of target bounding box.')
  59. parser.add_argument('--mosaic', default=None, type=float,
  60. help='mosaic augmentation.')
  61. parser.add_argument('--mixup', default=None, type=float,
  62. help='mixup augmentation.')
  63. parser.add_argument('--load_cache', action='store_true', default=False,
  64. help='load data into memory.')
  65. return parser.parse_args()
  66. @torch.no_grad()
  67. def test_det(args,
  68. model,
  69. device,
  70. dataset,
  71. transform=None,
  72. class_colors=None,
  73. class_names=None,
  74. class_indexs=None):
  75. num_images = len(dataset)
  76. save_path = os.path.join('det_results/', args.dataset, args.model)
  77. os.makedirs(save_path, exist_ok=True)
  78. for index in range(num_images):
  79. print('Testing image {:d}/{:d}....'.format(index+1, num_images))
  80. image, _ = dataset.pull_image(index)
  81. orig_h, orig_w, _ = image.shape
  82. # prepare
  83. x, _, ratio = transform(image)
  84. x = x.unsqueeze(0).to(device)
  85. t0 = time.time()
  86. # inference
  87. outputs = model(x)
  88. scores = outputs['scores']
  89. labels = outputs['labels']
  90. bboxes = outputs['bboxes']
  91. print("detection time used ", time.time() - t0, "s")
  92. # rescale bboxes
  93. bboxes = rescale_bboxes(bboxes, [orig_w, orig_h], ratio)
  94. # vis detection
  95. img_processed = visualize(image=image,
  96. bboxes=bboxes,
  97. scores=scores,
  98. labels=labels,
  99. class_colors=class_colors,
  100. class_names=class_names,
  101. class_indexs=class_indexs)
  102. if args.show:
  103. h, w = img_processed.shape[:2]
  104. sw, sh = int(w*args.window_scale), int(h*args.window_scale)
  105. cv2.namedWindow('detection', 0)
  106. cv2.resizeWindow('detection', sw, sh)
  107. cv2.imshow('detection', img_processed)
  108. cv2.waitKey(0)
  109. if args.save:
  110. # save result
  111. cv2.imwrite(os.path.join(save_path, str(index).zfill(6) +'.jpg'), img_processed)
  112. if __name__ == '__main__':
  113. args = parse_args()
  114. # cuda
  115. if args.cuda:
  116. print('use cuda')
  117. device = torch.device("cuda")
  118. else:
  119. device = torch.device("cpu")
  120. # Dataset & Model Config
  121. data_cfg = build_dataset_config(args)
  122. model_cfg = build_model_config(args)
  123. trans_cfg = build_trans_config(model_cfg['trans_type'])
  124. # Transform
  125. val_transform, trans_cfg = build_transform(args, trans_cfg, model_cfg['max_stride'], is_train=False)
  126. # Dataset
  127. dataset, dataset_info = build_dataset(args, data_cfg, trans_cfg, val_transform, is_train=False)
  128. num_classes = dataset_info['num_classes']
  129. np.random.seed(0)
  130. class_colors = [(np.random.randint(255),
  131. np.random.randint(255),
  132. np.random.randint(255)) for _ in range(num_classes)]
  133. # build model
  134. model = build_model(args, model_cfg, device, num_classes, False)
  135. # load trained weight
  136. model = load_weight(model, args.weight, args.fuse_conv_bn)
  137. model.to(device).eval()
  138. # compute FLOPs and Params
  139. model_copy = deepcopy(model)
  140. model_copy.trainable = False
  141. model_copy.eval()
  142. compute_flops(
  143. model=model_copy,
  144. img_size=args.img_size,
  145. device=device)
  146. del model_copy
  147. # resave model weight
  148. if args.resave:
  149. print('Resave: {}'.format(args.model.upper()))
  150. checkpoint = torch.load(args.weight, map_location='cpu')
  151. checkpoint_path = 'weights/{}/{}/{}_pure.pth'.format(args.dataset, args.model, args.model)
  152. torch.save({'model': model.state_dict(),
  153. 'mAP': checkpoint.pop("mAP"),
  154. 'epoch': checkpoint.pop("epoch")},
  155. checkpoint_path)
  156. print("================= DETECT =================")
  157. # run
  158. test_det(args=args,
  159. model=model,
  160. device=device,
  161. dataset=dataset,
  162. transform=val_transform,
  163. class_colors=class_colors,
  164. class_names=dataset_info['class_names'],
  165. class_indexs=dataset_info['class_indexs'],
  166. )