| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 |
- import argparse
- import cv2
- import os
- import time
- import numpy as np
- from copy import deepcopy
- import torch
- # load transform
- from dataset.build import build_dataset, build_transform
- # load some utils
- from utils.misc import load_weight, compute_flops
- from utils.box_ops import rescale_bboxes
- from utils.vis_tools import visualize
- from config import build_dataset_config, build_model_config, build_trans_config
- from models.detectors import build_model
- def parse_args():
- parser = argparse.ArgumentParser(description='Real-time Object Detection LAB')
- # Basic setting
- parser.add_argument('-size', '--img_size', default=640, type=int,
- help='the max size of input image')
- parser.add_argument('--show', action='store_true', default=False,
- help='show the visulization results.')
- parser.add_argument('--save', action='store_true', default=False,
- help='save the visulization results.')
- parser.add_argument('--cuda', action='store_true', default=False,
- help='use cuda.')
- parser.add_argument('--save_folder', default='det_results/', type=str,
- help='Dir to save results')
- parser.add_argument('-ws', '--window_scale', default=1.0, type=float,
- help='resize window of cv2 for visualization.')
- parser.add_argument('--resave', action='store_true', default=False,
- help='resave checkpoints without optimizer state dict.')
- # Model setting
- parser.add_argument('-m', '--model', default='yolov1', type=str,
- help='build yolo')
- parser.add_argument('--weight', default=None,
- type=str, help='Trained state_dict file path to open')
- parser.add_argument('-ct', '--conf_thresh', default=0.3, type=float,
- help='confidence threshold')
- parser.add_argument('-nt', '--nms_thresh', default=0.5, type=float,
- help='NMS threshold')
- parser.add_argument('--topk', default=100, type=int,
- help='topk candidates dets of each level before NMS')
- parser.add_argument("--no_decode", action="store_true", default=False,
- help="not decode in inference or yes")
- parser.add_argument('--fuse_conv_bn', action='store_true', default=False,
- help='fuse Conv & BN')
- parser.add_argument('--no_multi_labels', action='store_true', default=False,
- help='Perform post-process with multi-labels trick.')
- parser.add_argument('--nms_class_agnostic', action='store_true', default=False,
- help='Perform NMS operations regardless of category.')
- # Data setting
- parser.add_argument('--root', default='/Users/liuhaoran/Desktop/python_work/object-detection/dataset/',
- help='data root')
- parser.add_argument('-d', '--dataset', default='coco',
- help='coco, voc.')
- parser.add_argument('--min_box_size', default=8.0, type=float,
- help='min size of target bounding box.')
- parser.add_argument('--mosaic', default=None, type=float,
- help='mosaic augmentation.')
- parser.add_argument('--mixup', default=None, type=float,
- help='mixup augmentation.')
- parser.add_argument('--load_cache', action='store_true', default=False,
- help='load data into memory.')
- return parser.parse_args()
- @torch.no_grad()
- def test_det(args,
- model,
- device,
- dataset,
- transform=None,
- class_colors=None,
- class_names=None,
- class_indexs=None):
- num_images = len(dataset)
- save_path = os.path.join('det_results/', args.dataset, args.model)
- os.makedirs(save_path, exist_ok=True)
- for index in range(num_images):
- print('Testing image {:d}/{:d}....'.format(index+1, num_images))
- image, _ = dataset.pull_image(index)
- orig_h, orig_w, _ = image.shape
- # prepare
- x, _, ratio = transform(image)
- x = x.unsqueeze(0).to(device)
- t0 = time.time()
- # inference
- outputs = model(x)
- scores = outputs['scores']
- labels = outputs['labels']
- bboxes = outputs['bboxes']
- print("detection time used ", time.time() - t0, "s")
-
- # rescale bboxes
- bboxes = rescale_bboxes(bboxes, [orig_w, orig_h], ratio)
- # vis detection
- img_processed = visualize(image=image,
- bboxes=bboxes,
- scores=scores,
- labels=labels,
- class_colors=class_colors,
- class_names=class_names,
- class_indexs=class_indexs)
- if args.show:
- h, w = img_processed.shape[:2]
- sw, sh = int(w*args.window_scale), int(h*args.window_scale)
- cv2.namedWindow('detection', 0)
- cv2.resizeWindow('detection', sw, sh)
- cv2.imshow('detection', img_processed)
- cv2.waitKey(0)
- if args.save:
- # save result
- cv2.imwrite(os.path.join(save_path, str(index).zfill(6) +'.jpg'), img_processed)
- if __name__ == '__main__':
- args = parse_args()
- # cuda
- if args.cuda:
- print('use cuda')
- device = torch.device("cuda")
- else:
- device = torch.device("cpu")
- # Dataset & Model Config
- data_cfg = build_dataset_config(args)
- model_cfg = build_model_config(args)
- trans_cfg = build_trans_config(model_cfg['trans_type'])
- # Transform
- val_transform, trans_cfg = build_transform(args, trans_cfg, model_cfg['max_stride'], is_train=False)
- # Dataset
- dataset, dataset_info = build_dataset(args, data_cfg, trans_cfg, val_transform, is_train=False)
- num_classes = dataset_info['num_classes']
- np.random.seed(0)
- class_colors = [(np.random.randint(255),
- np.random.randint(255),
- np.random.randint(255)) for _ in range(num_classes)]
- # build model
- model = build_model(args, model_cfg, device, num_classes, False)
- # load trained weight
- model = load_weight(model, args.weight, args.fuse_conv_bn)
- model.to(device).eval()
- # compute FLOPs and Params
- model_copy = deepcopy(model)
- model_copy.trainable = False
- model_copy.eval()
- compute_flops(
- model=model_copy,
- img_size=args.img_size,
- device=device)
- del model_copy
- # resave model weight
- if args.resave:
- print('Resave: {}'.format(args.model.upper()))
- checkpoint = torch.load(args.weight, map_location='cpu')
- checkpoint_path = 'weights/{}/{}/{}_pure.pth'.format(args.dataset, args.model, args.model)
- torch.save({'model': model.state_dict(),
- 'mAP': checkpoint.pop("mAP"),
- 'epoch': checkpoint.pop("epoch")},
- checkpoint_path)
-
- print("================= DETECT =================")
- # run
- test_det(args=args,
- model=model,
- device=device,
- dataset=dataset,
- transform=val_transform,
- class_colors=class_colors,
- class_names=dataset_info['class_names'],
- class_indexs=dataset_info['class_indexs'],
- )
|