engine.py 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709
  1. import torch
  2. import torch.distributed as dist
  3. import time
  4. import os
  5. import numpy as np
  6. import random
  7. # ----------------- Extra Components -----------------
  8. from utils import distributed_utils
  9. from utils.misc import ModelEMA, CollateFunc, build_dataloader
  10. from utils.misc import MetricLogger, SmoothedValue
  11. from utils.vis_tools import vis_data
  12. # ----------------- Evaluator Components -----------------
  13. from evaluator.build import build_evluator
  14. # ----------------- Optimizer & LrScheduler Components -----------------
  15. from utils.solver.optimizer import build_optimizer
  16. from utils.solver.lr_scheduler import build_lambda_lr_scheduler
  17. # ----------------- Dataset Components -----------------
  18. from dataset.build import build_dataset, build_transform
  19. # ----------------------- Det trainers -----------------------
  20. ## Trainer for general YOLO series
  21. class YoloTrainer(object):
  22. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  23. # ------------------- basic parameters -------------------
  24. self.args = args
  25. self.epoch = 0
  26. self.best_map = -1.
  27. self.device = device
  28. self.criterion = criterion
  29. self.world_size = world_size
  30. self.grad_accumulate = args.grad_accumulate
  31. self.clip_grad = 35
  32. self.heavy_eval = False
  33. # weak augmentatino stage
  34. self.second_stage = False
  35. self.second_stage_epoch = args.no_aug_epoch
  36. # path to save model
  37. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  38. os.makedirs(self.path_to_save, exist_ok=True)
  39. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  40. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  41. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  42. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  43. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  44. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  45. self.data_cfg = data_cfg
  46. self.model_cfg = model_cfg
  47. self.trans_cfg = trans_cfg
  48. # ---------------------------- Build Transform ----------------------------
  49. self.train_transform, self.trans_cfg = build_transform(
  50. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  51. self.val_transform, _ = build_transform(
  52. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  53. # ---------------------------- Build Dataset & Dataloader ----------------------------
  54. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  55. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  56. # ---------------------------- Build Evaluator ----------------------------
  57. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  58. # ---------------------------- Build Grad. Scaler ----------------------------
  59. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  60. # ---------------------------- Build Optimizer ----------------------------
  61. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  62. self.optimizer, self.start_epoch = build_optimizer(self.optimizer_dict, model, args.resume)
  63. # ---------------------------- Build LR Scheduler ----------------------------
  64. self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
  65. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  66. if self.args.resume and self.args.resume != 'None':
  67. self.lr_scheduler.step()
  68. # ---------------------------- Build Model-EMA ----------------------------
  69. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  70. print('Build ModelEMA ...')
  71. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  72. else:
  73. self.model_ema = None
  74. def train(self, model):
  75. for epoch in range(self.start_epoch, self.args.max_epoch):
  76. if self.args.distributed:
  77. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  78. # check second stage
  79. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  80. self.check_second_stage()
  81. # save model of the last mosaic epoch
  82. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  83. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  84. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  85. torch.save({'model': model.state_dict(),
  86. 'mAP': round(self.evaluator.map*100, 1),
  87. 'optimizer': self.optimizer.state_dict(),
  88. 'epoch': self.epoch,
  89. 'args': self.args},
  90. checkpoint_path)
  91. # train one epoch
  92. self.epoch = epoch
  93. self.train_one_epoch(model)
  94. # eval one epoch
  95. if self.heavy_eval:
  96. model_eval = model.module if self.args.distributed else model
  97. self.eval(model_eval)
  98. else:
  99. model_eval = model.module if self.args.distributed else model
  100. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  101. self.eval(model_eval)
  102. if self.args.debug:
  103. print("For debug mode, we only train 1 epoch")
  104. break
  105. def eval(self, model):
  106. # chech model
  107. model_eval = model if self.model_ema is None else self.model_ema.ema
  108. if distributed_utils.is_main_process():
  109. # check evaluator
  110. if self.evaluator is None:
  111. print('No evaluator ... save model and go on training.')
  112. print('Saving state, epoch: {}'.format(self.epoch))
  113. weight_name = '{}_no_eval.pth'.format(self.args.model)
  114. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  115. torch.save({'model': model_eval.state_dict(),
  116. 'mAP': -1.,
  117. 'optimizer': self.optimizer.state_dict(),
  118. 'epoch': self.epoch,
  119. 'args': self.args},
  120. checkpoint_path)
  121. else:
  122. print('eval ...')
  123. # set eval mode
  124. model_eval.trainable = False
  125. model_eval.eval()
  126. # evaluate
  127. with torch.no_grad():
  128. self.evaluator.evaluate(model_eval)
  129. # save model
  130. cur_map = self.evaluator.map
  131. if cur_map > self.best_map:
  132. # update best-map
  133. self.best_map = cur_map
  134. # save model
  135. print('Saving state, epoch:', self.epoch)
  136. weight_name = '{}_best.pth'.format(self.args.model)
  137. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  138. torch.save({'model': model_eval.state_dict(),
  139. 'mAP': round(self.best_map*100, 1),
  140. 'optimizer': self.optimizer.state_dict(),
  141. 'epoch': self.epoch,
  142. 'args': self.args},
  143. checkpoint_path)
  144. # set train mode.
  145. model_eval.trainable = True
  146. model_eval.train()
  147. if self.args.distributed:
  148. # wait for all processes to synchronize
  149. dist.barrier()
  150. def train_one_epoch(self, model):
  151. metric_logger = MetricLogger(delimiter=" ")
  152. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  153. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  154. metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
  155. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  156. epoch_size = len(self.train_loader)
  157. print_freq = 10
  158. grad_norm = 0.0
  159. # basic parameters
  160. epoch_size = len(self.train_loader)
  161. img_size = self.args.img_size
  162. nw = epoch_size * self.args.wp_epoch
  163. # Train one epoch
  164. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  165. ni = iter_i + self.epoch * epoch_size
  166. # Warmup
  167. if ni <= nw:
  168. xi = [0, nw] # x interp
  169. for j, x in enumerate(self.optimizer.param_groups):
  170. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  171. x['lr'] = np.interp(
  172. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  173. if 'momentum' in x:
  174. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  175. # To device
  176. images = images.to(self.device, non_blocking=True).float()
  177. # Multi scale
  178. if self.args.multi_scale:
  179. images, targets, img_size = self.rescale_image_targets(
  180. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  181. else:
  182. targets = self.refine_targets(targets, self.args.min_box_size)
  183. # Visualize train targets
  184. if self.args.vis_tgt:
  185. vis_data(images*255, targets)
  186. # Inference
  187. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  188. outputs = model(images)
  189. # Compute loss
  190. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  191. losses = loss_dict['losses']
  192. # Grad Accumulate
  193. if self.grad_accumulate > 1:
  194. losses /= self.grad_accumulate
  195. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  196. # Backward
  197. self.scaler.scale(losses).backward()
  198. # Optimize
  199. if ni % self.grad_accumulate == 0:
  200. if self.clip_grad > 0:
  201. # unscale gradients
  202. self.scaler.unscale_(self.optimizer)
  203. # clip gradients
  204. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  205. # optimizer.step
  206. self.scaler.step(self.optimizer)
  207. self.scaler.update()
  208. self.optimizer.zero_grad()
  209. # ema
  210. if self.model_ema is not None:
  211. self.model_ema.update(model)
  212. # Update log
  213. metric_logger.update(**loss_dict_reduced)
  214. metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  215. metric_logger.update(grad_norm=grad_norm)
  216. metric_logger.update(size=img_size)
  217. if self.args.debug:
  218. print("For debug mode, we only train 1 iteration")
  219. break
  220. # LR Schedule
  221. self.lr_scheduler.step()
  222. # Gather the stats from all processes
  223. metric_logger.synchronize_between_processes()
  224. print("Averaged stats:", metric_logger)
  225. def refine_targets(self, targets, min_box_size):
  226. # rescale targets
  227. for tgt in targets:
  228. boxes = tgt["boxes"].clone()
  229. labels = tgt["labels"].clone()
  230. # refine tgt
  231. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  232. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  233. keep = (min_tgt_size >= min_box_size)
  234. tgt["boxes"] = boxes[keep]
  235. tgt["labels"] = labels[keep]
  236. return targets
  237. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  238. """
  239. Deployed for Multi scale trick.
  240. """
  241. if isinstance(stride, int):
  242. max_stride = stride
  243. elif isinstance(stride, list):
  244. max_stride = max(stride)
  245. # During training phase, the shape of input image is square.
  246. old_img_size = images.shape[-1]
  247. min_img_size = old_img_size * multi_scale_range[0]
  248. max_img_size = old_img_size * multi_scale_range[1]
  249. # Choose a new image size
  250. new_img_size = random.randrange(min_img_size, max_img_size + max_stride, max_stride)
  251. if new_img_size / old_img_size != 1:
  252. # interpolate
  253. images = torch.nn.functional.interpolate(
  254. input=images,
  255. size=new_img_size,
  256. mode='bilinear',
  257. align_corners=False)
  258. # rescale targets
  259. for tgt in targets:
  260. boxes = tgt["boxes"].clone()
  261. labels = tgt["labels"].clone()
  262. boxes = torch.clamp(boxes, 0, old_img_size)
  263. # rescale box
  264. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  265. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  266. # refine tgt
  267. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  268. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  269. keep = (min_tgt_size >= min_box_size)
  270. tgt["boxes"] = boxes[keep]
  271. tgt["labels"] = labels[keep]
  272. return images, targets, new_img_size
  273. def check_second_stage(self):
  274. # set second stage
  275. print('============== Second stage of Training ==============')
  276. self.second_stage = True
  277. # close mosaic augmentation
  278. if self.train_loader.dataset.mosaic_prob > 0.:
  279. print(' - Close < Mosaic Augmentation > ...')
  280. self.train_loader.dataset.mosaic_prob = 0.
  281. self.heavy_eval = True
  282. # close mixup augmentation
  283. if self.train_loader.dataset.mixup_prob > 0.:
  284. print(' - Close < Mixup Augmentation > ...')
  285. self.train_loader.dataset.mixup_prob = 0.
  286. self.heavy_eval = True
  287. # close rotation augmentation
  288. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  289. print(' - Close < degress of rotation > ...')
  290. self.trans_cfg['degrees'] = 0.0
  291. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  292. print(' - Close < shear of rotation >...')
  293. self.trans_cfg['shear'] = 0.0
  294. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  295. print(' - Close < perspective of rotation > ...')
  296. self.trans_cfg['perspective'] = 0.0
  297. # build a new transform for second stage
  298. print(' - Rebuild transforms ...')
  299. self.train_transform, self.trans_cfg = build_transform(
  300. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  301. self.train_loader.dataset.transform = self.train_transform
  302. ## Customed Trainer for YOLOX series
  303. class YoloxTrainer(object):
  304. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  305. # ------------------- basic parameters -------------------
  306. self.args = args
  307. self.epoch = 0
  308. self.best_map = -1.
  309. self.device = device
  310. self.criterion = criterion
  311. self.world_size = world_size
  312. self.grad_accumulate = args.grad_accumulate
  313. self.no_aug_epoch = args.no_aug_epoch
  314. self.heavy_eval = False
  315. # weak augmentatino stage
  316. self.second_stage = False
  317. self.second_stage_epoch = args.no_aug_epoch
  318. # path to save model
  319. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  320. os.makedirs(self.path_to_save, exist_ok=True)
  321. # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
  322. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
  323. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  324. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  325. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  326. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  327. self.data_cfg = data_cfg
  328. self.model_cfg = model_cfg
  329. self.trans_cfg = trans_cfg
  330. # ---------------------------- Build Transform ----------------------------
  331. self.train_transform, self.trans_cfg = build_transform(
  332. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  333. self.val_transform, _ = build_transform(
  334. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  335. # ---------------------------- Build Dataset & Dataloader ----------------------------
  336. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  337. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  338. # ---------------------------- Build Evaluator ----------------------------
  339. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  340. # ---------------------------- Build Grad. Scaler ----------------------------
  341. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  342. # ---------------------------- Build Optimizer ----------------------------
  343. self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
  344. self.optimizer, self.start_epoch = build_optimizer(self.optimizer_dict, model, self.args.resume)
  345. # ---------------------------- Build LR Scheduler ----------------------------
  346. self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
  347. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  348. if self.args.resume and self.args.resume != 'None':
  349. self.lr_scheduler.step()
  350. # ---------------------------- Build Model-EMA ----------------------------
  351. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  352. print('Build ModelEMA ...')
  353. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  354. else:
  355. self.model_ema = None
  356. def train(self, model):
  357. for epoch in range(self.start_epoch, self.args.max_epoch):
  358. if self.args.distributed:
  359. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  360. # check second stage
  361. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  362. self.check_second_stage()
  363. # save model of the last mosaic epoch
  364. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  365. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  366. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  367. torch.save({'model': model.state_dict(),
  368. 'mAP': round(self.evaluator.map*100, 1),
  369. 'optimizer': self.optimizer.state_dict(),
  370. 'epoch': self.epoch,
  371. 'args': self.args},
  372. checkpoint_path)
  373. # train one epoch
  374. self.epoch = epoch
  375. self.train_one_epoch(model)
  376. # eval one epoch
  377. if self.heavy_eval:
  378. model_eval = model.module if self.args.distributed else model
  379. self.eval(model_eval)
  380. else:
  381. model_eval = model.module if self.args.distributed else model
  382. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  383. self.eval(model_eval)
  384. if self.args.debug:
  385. print("For debug mode, we only train 1 epoch")
  386. break
  387. def eval(self, model):
  388. # chech model
  389. model_eval = model if self.model_ema is None else self.model_ema.ema
  390. if distributed_utils.is_main_process():
  391. # check evaluator
  392. if self.evaluator is None:
  393. print('No evaluator ... save model and go on training.')
  394. print('Saving state, epoch: {}'.format(self.epoch))
  395. weight_name = '{}_no_eval.pth'.format(self.args.model)
  396. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  397. torch.save({'model': model_eval.state_dict(),
  398. 'mAP': -1.,
  399. 'optimizer': self.optimizer.state_dict(),
  400. 'epoch': self.epoch,
  401. 'args': self.args},
  402. checkpoint_path)
  403. else:
  404. print('eval ...')
  405. # set eval mode
  406. model_eval.trainable = False
  407. model_eval.eval()
  408. # evaluate
  409. with torch.no_grad():
  410. self.evaluator.evaluate(model_eval)
  411. # save model
  412. cur_map = self.evaluator.map
  413. if cur_map > self.best_map:
  414. # update best-map
  415. self.best_map = cur_map
  416. # save model
  417. print('Saving state, epoch:', self.epoch)
  418. weight_name = '{}_best.pth'.format(self.args.model)
  419. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  420. torch.save({'model': model_eval.state_dict(),
  421. 'mAP': round(self.best_map*100, 1),
  422. 'optimizer': self.optimizer.state_dict(),
  423. 'epoch': self.epoch,
  424. 'args': self.args},
  425. checkpoint_path)
  426. # set train mode.
  427. model_eval.trainable = True
  428. model_eval.train()
  429. if self.args.distributed:
  430. # wait for all processes to synchronize
  431. dist.barrier()
  432. def train_one_epoch(self, model):
  433. # basic parameters
  434. epoch_size = len(self.train_loader)
  435. img_size = self.args.img_size
  436. t0 = time.time()
  437. nw = epoch_size * self.args.wp_epoch
  438. # Train one epoch
  439. for iter_i, (images, targets) in enumerate(self.train_loader):
  440. ni = iter_i + self.epoch * epoch_size
  441. # Warmup
  442. if ni <= nw:
  443. xi = [0, nw] # x interp
  444. for j, x in enumerate(self.optimizer.param_groups):
  445. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  446. x['lr'] = np.interp(
  447. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  448. if 'momentum' in x:
  449. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  450. # To device
  451. images = images.to(self.device, non_blocking=True).float()
  452. # Multi scale
  453. if self.args.multi_scale and ni % 10 == 0:
  454. images, targets, img_size = self.rescale_image_targets(
  455. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  456. else:
  457. targets = self.refine_targets(targets, self.args.min_box_size)
  458. # Visualize train targets
  459. if self.args.vis_tgt:
  460. vis_data(images*255, targets)
  461. # Inference
  462. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  463. outputs = model(images)
  464. # Compute loss
  465. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  466. losses = loss_dict['losses']
  467. # Grad Accu
  468. if self.grad_accumulate > 1:
  469. losses /= self.grad_accumulate
  470. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  471. # Backward
  472. self.scaler.scale(losses).backward()
  473. # Optimize
  474. if ni % self.grad_accumulate == 0:
  475. self.scaler.step(self.optimizer)
  476. self.scaler.update()
  477. self.optimizer.zero_grad()
  478. # ema
  479. if self.model_ema is not None:
  480. self.model_ema.update(model)
  481. # Logs
  482. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  483. t1 = time.time()
  484. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  485. # basic infor
  486. log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
  487. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  488. log += '[lr: {:.6f}]'.format(cur_lr[2])
  489. # loss infor
  490. for k in loss_dict_reduced.keys():
  491. loss_val = loss_dict_reduced[k]
  492. if k == 'losses':
  493. loss_val *= self.grad_accumulate
  494. log += '[{}: {:.2f}]'.format(k, loss_val)
  495. # other infor
  496. log += '[time: {:.2f}]'.format(t1 - t0)
  497. log += '[size: {}]'.format(img_size)
  498. # print log infor
  499. print(log, flush=True)
  500. t0 = time.time()
  501. if self.args.debug:
  502. print("For debug mode, we only train 1 iteration")
  503. break
  504. # LR Schedule
  505. if not self.second_stage:
  506. self.lr_scheduler.step()
  507. def check_second_stage(self):
  508. # set second stage
  509. print('============== Second stage of Training ==============')
  510. self.second_stage = True
  511. self.heavy_eval = True
  512. # close mosaic augmentation
  513. if self.train_loader.dataset.mosaic_prob > 0.:
  514. print(' - Close < Mosaic Augmentation > ...')
  515. self.train_loader.dataset.mosaic_prob = 0.
  516. # close mixup augmentation
  517. if self.train_loader.dataset.mixup_prob > 0.:
  518. print(' - Close < Mixup Augmentation > ...')
  519. self.train_loader.dataset.mixup_prob = 0.
  520. # close rotation augmentation
  521. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  522. print(' - Close < degress of rotation > ...')
  523. self.trans_cfg['degrees'] = 0.0
  524. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  525. print(' - Close < shear of rotation >...')
  526. self.trans_cfg['shear'] = 0.0
  527. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  528. print(' - Close < perspective of rotation > ...')
  529. self.trans_cfg['perspective'] = 0.0
  530. # close random affine
  531. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  532. print(' - Close < translate of affine > ...')
  533. self.trans_cfg['translate'] = 0.0
  534. if 'scale' in self.trans_cfg.keys():
  535. print(' - Close < scale of affine >...')
  536. self.trans_cfg['scale'] = [1.0, 1.0]
  537. # build a new transform for second stage
  538. print(' - Rebuild transforms ...')
  539. self.train_transform, self.trans_cfg = build_transform(
  540. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  541. self.train_loader.dataset.transform = self.train_transform
  542. def refine_targets(self, targets, min_box_size):
  543. # rescale targets
  544. for tgt in targets:
  545. boxes = tgt["boxes"].clone()
  546. labels = tgt["labels"].clone()
  547. # refine tgt
  548. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  549. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  550. keep = (min_tgt_size >= min_box_size)
  551. tgt["boxes"] = boxes[keep]
  552. tgt["labels"] = labels[keep]
  553. return targets
  554. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  555. """
  556. Deployed for Multi scale trick.
  557. """
  558. if isinstance(stride, int):
  559. max_stride = stride
  560. elif isinstance(stride, list):
  561. max_stride = max(stride)
  562. # During training phase, the shape of input image is square.
  563. old_img_size = images.shape[-1]
  564. min_img_size = old_img_size * multi_scale_range[0]
  565. max_img_size = old_img_size * multi_scale_range[1]
  566. # Choose a new image size
  567. new_img_size = random.randrange(min_img_size, max_img_size + max_stride, max_stride)
  568. new_img_size = new_img_size // max_stride * max_stride # size
  569. if new_img_size / old_img_size != 1:
  570. # interpolate
  571. images = torch.nn.functional.interpolate(
  572. input=images,
  573. size=new_img_size,
  574. mode='bilinear',
  575. align_corners=False)
  576. # rescale targets
  577. for tgt in targets:
  578. boxes = tgt["boxes"].clone()
  579. labels = tgt["labels"].clone()
  580. boxes = torch.clamp(boxes, 0, old_img_size)
  581. # rescale box
  582. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  583. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  584. # refine tgt
  585. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  586. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  587. keep = (min_tgt_size >= min_box_size)
  588. tgt["boxes"] = boxes[keep]
  589. tgt["labels"] = labels[keep]
  590. return images, targets, new_img_size
  591. # Build Trainer
  592. def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  593. # ----------------------- Det trainers -----------------------
  594. if model_cfg['trainer_type'] == 'yolo':
  595. return YoloTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  596. elif model_cfg['trainer_type'] == 'yolox':
  597. return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  598. else:
  599. raise NotImplementedError(model_cfg['trainer_type'])