| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709 |
- import torch
- import torch.distributed as dist
- import time
- import os
- import numpy as np
- import random
- # ----------------- Extra Components -----------------
- from utils import distributed_utils
- from utils.misc import ModelEMA, CollateFunc, build_dataloader
- from utils.misc import MetricLogger, SmoothedValue
- from utils.vis_tools import vis_data
- # ----------------- Evaluator Components -----------------
- from evaluator.build import build_evluator
- # ----------------- Optimizer & LrScheduler Components -----------------
- from utils.solver.optimizer import build_optimizer
- from utils.solver.lr_scheduler import build_lambda_lr_scheduler
- # ----------------- Dataset Components -----------------
- from dataset.build import build_dataset, build_transform
- # ----------------------- Det trainers -----------------------
- ## Trainer for general YOLO series
- class YoloTrainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.grad_accumulate = args.grad_accumulate
- self.clip_grad = 35
- self.heavy_eval = False
- # weak augmentatino stage
- self.second_stage = False
- self.second_stage_epoch = args.no_aug_epoch
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
- self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
- self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
- self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
- self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
- self.optimizer, self.start_epoch = build_optimizer(self.optimizer_dict, model, args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- metric_logger = MetricLogger(delimiter=" ")
- metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
- metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
- metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
- header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
- epoch_size = len(self.train_loader)
- print_freq = 10
- grad_norm = 0.0
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- nw = epoch_size * self.args.wp_epoch
- # Train one epoch
- for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
-
- # To device
- images = images.to(self.device, non_blocking=True).float()
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # Visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets)
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # Compute loss
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
- losses = loss_dict['losses']
- # Grad Accumulate
- if self.grad_accumulate > 1:
- losses /= self.grad_accumulate
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- # Backward
- self.scaler.scale(losses).backward()
- # Optimize
- if ni % self.grad_accumulate == 0:
- if self.clip_grad > 0:
- # unscale gradients
- self.scaler.unscale_(self.optimizer)
- # clip gradients
- grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
- # optimizer.step
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # ema
- if self.model_ema is not None:
- self.model_ema.update(model)
- # Update log
- metric_logger.update(**loss_dict_reduced)
- metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
- metric_logger.update(grad_norm=grad_norm)
- metric_logger.update(size=img_size)
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
- # LR Schedule
- self.lr_scheduler.step()
- # Gather the stats from all processes
- metric_logger.synchronize_between_processes()
- print("Averaged stats:", metric_logger)
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- min_img_size = old_img_size * multi_scale_range[0]
- max_img_size = old_img_size * multi_scale_range[1]
- # Choose a new image size
- new_img_size = random.randrange(min_img_size, max_img_size + max_stride, max_stride)
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- ## Customed Trainer for YOLOX series
- class YoloxTrainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.grad_accumulate = args.grad_accumulate
- self.no_aug_epoch = args.no_aug_epoch
- self.heavy_eval = False
- # weak augmentatino stage
- self.second_stage = False
- self.second_stage_epoch = args.no_aug_epoch
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
- self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
- self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
- self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
- self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
- self.optimizer, self.start_epoch = build_optimizer(self.optimizer_dict, model, self.args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
-
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- t0 = time.time()
- nw = epoch_size * self.args.wp_epoch
- # Train one epoch
- for iter_i, (images, targets) in enumerate(self.train_loader):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
-
- # To device
- images = images.to(self.device, non_blocking=True).float()
- # Multi scale
- if self.args.multi_scale and ni % 10 == 0:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # Visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets)
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # Compute loss
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
- losses = loss_dict['losses']
- # Grad Accu
- if self.grad_accumulate > 1:
- losses /= self.grad_accumulate
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- # Backward
- self.scaler.scale(losses).backward()
- # Optimize
- if ni % self.grad_accumulate == 0:
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # ema
- if self.model_ema is not None:
- self.model_ema.update(model)
- # Logs
- if distributed_utils.is_main_process() and iter_i % 10 == 0:
- t1 = time.time()
- cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
- # basic infor
- log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
- log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
- log += '[lr: {:.6f}]'.format(cur_lr[2])
- # loss infor
- for k in loss_dict_reduced.keys():
- loss_val = loss_dict_reduced[k]
- if k == 'losses':
- loss_val *= self.grad_accumulate
- log += '[{}: {:.2f}]'.format(k, loss_val)
- # other infor
- log += '[time: {:.2f}]'.format(t1 - t0)
- log += '[size: {}]'.format(img_size)
- # print log infor
- print(log, flush=True)
-
- t0 = time.time()
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
- # LR Schedule
- if not self.second_stage:
- self.lr_scheduler.step()
-
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- self.heavy_eval = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # close random affine
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
- print(' - Close < translate of affine > ...')
- self.trans_cfg['translate'] = 0.0
- if 'scale' in self.trans_cfg.keys():
- print(' - Close < scale of affine >...')
- self.trans_cfg['scale'] = [1.0, 1.0]
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- min_img_size = old_img_size * multi_scale_range[0]
- max_img_size = old_img_size * multi_scale_range[1]
- # Choose a new image size
- new_img_size = random.randrange(min_img_size, max_img_size + max_stride, max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
-
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- # Build Trainer
- def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ----------------------- Det trainers -----------------------
- if model_cfg['trainer_type'] == 'yolo':
- return YoloTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
- elif model_cfg['trainer_type'] == 'yolox':
- return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
- else:
- raise NotImplementedError(model_cfg['trainer_type'])
-
|