| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 |
- import numpy as np
- import torch
- import torch.nn as nn
- # ---------------------------- Base Conv Module ----------------------------
- class SiLU(nn.Module):
- """export-friendly version of nn.SiLU()"""
- @staticmethod
- def forward(x):
- return x * torch.sigmoid(x)
- def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
- return conv
- def get_activation(act_type=None):
- if act_type == 'relu':
- return nn.ReLU(inplace=True)
- elif act_type == 'lrelu':
- return nn.LeakyReLU(0.1, inplace=True)
- elif act_type == 'mish':
- return nn.Mish(inplace=True)
- elif act_type == 'silu':
- return nn.SiLU(inplace=True)
- elif act_type is None:
- return nn.Identity()
- def get_norm(norm_type, dim):
- if norm_type == 'BN':
- return nn.BatchNorm2d(dim)
- elif norm_type == 'GN':
- return nn.GroupNorm(num_groups=32, num_channels=dim)
- class Conv(nn.Module):
- def __init__(self,
- c1, # in channels
- c2, # out channels
- k=1, # kernel size
- p=0, # padding
- s=1, # padding
- d=1, # dilation
- act_type='lrelu', # activation
- norm_type='BN', # normalization
- depthwise=False):
- super(Conv, self).__init__()
- convs = []
- add_bias = False if norm_type else True
- p = p if d == 1 else d
- if depthwise:
- convs.append(get_conv2d(c1, c1, k=k, p=p, s=s, d=d, g=c1, bias=add_bias))
- # depthwise conv
- if norm_type:
- convs.append(get_norm(norm_type, c1))
- if act_type:
- convs.append(get_activation(act_type))
- # pointwise conv
- convs.append(get_conv2d(c1, c2, k=1, p=0, s=1, d=d, g=1, bias=add_bias))
- if norm_type:
- convs.append(get_norm(norm_type, c2))
- if act_type:
- convs.append(get_activation(act_type))
- else:
- convs.append(get_conv2d(c1, c2, k=k, p=p, s=s, d=d, g=1, bias=add_bias))
- if norm_type:
- convs.append(get_norm(norm_type, c2))
- if act_type:
- convs.append(get_activation(act_type))
-
- self.convs = nn.Sequential(*convs)
- def forward(self, x):
- return self.convs(x)
- # ---------------------------- Base Modules ----------------------------
- ## Multi-head Mixed Conv (MHMC)
- class MultiHeadMixedConv(nn.Module):
- def __init__(self, in_dim, out_dim, num_heads=4, shortcut=False, act_type='silu', norm_type='BN', depthwise=False):
- super().__init__()
- # -------------- Basic parameters --------------
- self.in_dim = in_dim
- self.out_dim = out_dim
- self.num_heads = num_heads
- self.shortcut = shortcut
- self.head_dim = in_dim // num_heads
- # -------------- Network parameters --------------
- ## Scale Modulation
- self.mixed_convs = nn.ModuleList()
- for i in range(num_heads):
- self.mixed_convs.append(
- Conv(self.head_dim, self.head_dim, k=2*i+1, p=i, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- ## Out-proj
- self.out_proj = Conv(in_dim, out_dim, k=1, act_type=act_type, norm_type=norm_type)
- def forward(self, x):
- xs = torch.chunk(x, self.num_heads, dim=1)
- ys = [mixed_conv(x_h) for x_h, mixed_conv in zip(xs, self.mixed_convs)]
- out = self.out_proj(torch.cat(ys, dim=1))
- return out + x if self.shortcut else out
- # ---------------------------- Base Blocks ----------------------------
- ## Mixed Convolution Block
- class MCBlock(nn.Module):
- def __init__(self, in_dim, out_dim, nblocks=1, num_heads=4, shortcut=False, act_type='silu', norm_type='BN', depthwise=False):
- super().__init__()
- # -------------- Basic parameters --------------
- self.in_dim = in_dim
- self.out_dim = out_dim
- self.nblocks = nblocks
- self.num_heads = num_heads
- self.shortcut = shortcut
- self.inter_dim = in_dim // 2
- # -------------- Network parameters --------------
- ## branch-1
- self.cv1 = Conv(self.in_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.cv2 = Conv(self.in_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- ## branch-2
- self.smblocks = nn.Sequential(*[
- MultiHeadMixedConv(self.inter_dim, self.inter_dim, self.num_heads, self.shortcut, act_type, norm_type, depthwise)
- for _ in range(nblocks)])
- ## out proj
- self.out_proj = Conv(self.inter_dim*2, out_dim, k=1, act_type=act_type, norm_type=norm_type)
- def forward(self, x):
- # branch-1
- x1 = self.cv1(x)
- # branch-2
- x2 = self.smblocks(self.cv2(x))
- # output
- out = torch.cat([x1, x2], dim=1)
- out = self.out_proj(out)
- return out
- ## DownSample Block
- class DSBlock(nn.Module):
- def __init__(self, in_dim, out_dim, num_heads=4, act_type='silu', norm_type='BN', depthwise=False):
- super().__init__()
- self.in_dim = in_dim
- self.out_dim = out_dim
- self.inter_dim = out_dim // 2
- self.num_heads = num_heads
- # branch-1
- self.maxpool = nn.Sequential(
- Conv(in_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type),
- nn.MaxPool2d((2, 2), 2)
- )
- # branch-2
- self.ds_conv = nn.Sequential(
- Conv(in_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type),
- Conv(self.inter_dim, self.inter_dim, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- def forward(self, x):
- # branch-1
- x1 = self.maxpool(x)
- # branch-2
- x2 = self.ds_conv(x)
- # out-proj
- out = torch.cat([x1, x2], dim=1)
- return out
- # ---------------------------- FPN Modules ----------------------------
- ## build fpn's core block
- def build_fpn_block(cfg, in_dim, out_dim):
- if cfg['fpn_core_block'] == 'mcblock':
- layer = MCBlock(in_dim=in_dim,
- out_dim=out_dim,
- nblocks=round(cfg['depth'] * 3),
- num_heads=cfg['fpn_num_heads'],
- shortcut=False,
- act_type=cfg['fpn_act'],
- norm_type=cfg['fpn_norm'],
- depthwise=cfg['fpn_depthwise']
- )
-
- return layer
- ## build fpn's reduce layer
- def build_reduce_layer(cfg, in_dim, out_dim):
- if cfg['fpn_reduce_layer'] == 'conv':
- layer = Conv(in_dim, out_dim, k=1, act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'])
-
- return layer
- ## build fpn's downsample layer
- def build_downsample_layer(cfg, in_dim, out_dim):
- if cfg['fpn_downsample_layer'] == 'conv':
- layer = Conv(in_dim, out_dim, k=3, s=2, p=1,
- act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'], depthwise=cfg['fpn_depthwise'])
- elif cfg['fpn_downsample_layer'] == 'maxpool':
- assert in_dim == out_dim
- layer = nn.MaxPool2d((2, 2), stride=2)
- elif cfg['fpn_downsample_layer'] == 'dsblock':
- layer = DSBlock(in_dim, out_dim, num_heads=cfg['fpn_num_heads'],
- act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'], depthwise=cfg['fpn_depthwise'])
-
- return layer
|