import numpy as np import torch import torch.nn as nn # ---------------------------- Base Conv Module ---------------------------- class SiLU(nn.Module): """export-friendly version of nn.SiLU()""" @staticmethod def forward(x): return x * torch.sigmoid(x) def get_conv2d(c1, c2, k, p, s, d, g, bias=False): conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias) return conv def get_activation(act_type=None): if act_type == 'relu': return nn.ReLU(inplace=True) elif act_type == 'lrelu': return nn.LeakyReLU(0.1, inplace=True) elif act_type == 'mish': return nn.Mish(inplace=True) elif act_type == 'silu': return nn.SiLU(inplace=True) elif act_type is None: return nn.Identity() def get_norm(norm_type, dim): if norm_type == 'BN': return nn.BatchNorm2d(dim) elif norm_type == 'GN': return nn.GroupNorm(num_groups=32, num_channels=dim) class Conv(nn.Module): def __init__(self, c1, # in channels c2, # out channels k=1, # kernel size p=0, # padding s=1, # padding d=1, # dilation act_type='lrelu', # activation norm_type='BN', # normalization depthwise=False): super(Conv, self).__init__() convs = [] add_bias = False if norm_type else True p = p if d == 1 else d if depthwise: convs.append(get_conv2d(c1, c1, k=k, p=p, s=s, d=d, g=c1, bias=add_bias)) # depthwise conv if norm_type: convs.append(get_norm(norm_type, c1)) if act_type: convs.append(get_activation(act_type)) # pointwise conv convs.append(get_conv2d(c1, c2, k=1, p=0, s=1, d=d, g=1, bias=add_bias)) if norm_type: convs.append(get_norm(norm_type, c2)) if act_type: convs.append(get_activation(act_type)) else: convs.append(get_conv2d(c1, c2, k=k, p=p, s=s, d=d, g=1, bias=add_bias)) if norm_type: convs.append(get_norm(norm_type, c2)) if act_type: convs.append(get_activation(act_type)) self.convs = nn.Sequential(*convs) def forward(self, x): return self.convs(x) # ---------------------------- Base Modules ---------------------------- ## Multi-head Mixed Conv (MHMC) class MultiHeadMixedConv(nn.Module): def __init__(self, in_dim, out_dim, num_heads=4, shortcut=False, act_type='silu', norm_type='BN', depthwise=False): super().__init__() # -------------- Basic parameters -------------- self.in_dim = in_dim self.out_dim = out_dim self.num_heads = num_heads self.shortcut = shortcut self.head_dim = in_dim // num_heads # -------------- Network parameters -------------- ## Scale Modulation self.mixed_convs = nn.ModuleList() for i in range(num_heads): self.mixed_convs.append( Conv(self.head_dim, self.head_dim, k=2*i+1, p=i, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) ## Out-proj self.out_proj = Conv(in_dim, out_dim, k=1, act_type=act_type, norm_type=norm_type) def forward(self, x): xs = torch.chunk(x, self.num_heads, dim=1) ys = [mixed_conv(x_h) for x_h, mixed_conv in zip(xs, self.mixed_convs)] out = self.out_proj(torch.cat(ys, dim=1)) return out + x if self.shortcut else out # ---------------------------- Base Blocks ---------------------------- ## Mixed Convolution Block class MCBlock(nn.Module): def __init__(self, in_dim, out_dim, nblocks=1, num_heads=4, shortcut=False, act_type='silu', norm_type='BN', depthwise=False): super().__init__() # -------------- Basic parameters -------------- self.in_dim = in_dim self.out_dim = out_dim self.nblocks = nblocks self.num_heads = num_heads self.shortcut = shortcut self.inter_dim = in_dim // 2 # -------------- Network parameters -------------- ## branch-1 self.cv1 = Conv(self.in_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type) self.cv2 = Conv(self.in_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type) ## branch-2 self.smblocks = nn.Sequential(*[ MultiHeadMixedConv(self.inter_dim, self.inter_dim, self.num_heads, self.shortcut, act_type, norm_type, depthwise) for _ in range(nblocks)]) ## out proj self.out_proj = Conv(self.inter_dim*2, out_dim, k=1, act_type=act_type, norm_type=norm_type) def forward(self, x): # branch-1 x1 = self.cv1(x) # branch-2 x2 = self.smblocks(self.cv2(x)) # output out = torch.cat([x1, x2], dim=1) out = self.out_proj(out) return out ## DownSample Block class DSBlock(nn.Module): def __init__(self, in_dim, out_dim, num_heads=4, act_type='silu', norm_type='BN', depthwise=False): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.inter_dim = out_dim // 2 self.num_heads = num_heads # branch-1 self.maxpool = nn.Sequential( Conv(in_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type), nn.MaxPool2d((2, 2), 2) ) # branch-2 self.ds_conv = nn.Sequential( Conv(in_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type), Conv(self.inter_dim, self.inter_dim, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) def forward(self, x): # branch-1 x1 = self.maxpool(x) # branch-2 x2 = self.ds_conv(x) # out-proj out = torch.cat([x1, x2], dim=1) return out # ---------------------------- FPN Modules ---------------------------- ## build fpn's core block def build_fpn_block(cfg, in_dim, out_dim): if cfg['fpn_core_block'] == 'mcblock': layer = MCBlock(in_dim=in_dim, out_dim=out_dim, nblocks=round(cfg['depth'] * 3), num_heads=cfg['fpn_num_heads'], shortcut=False, act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'], depthwise=cfg['fpn_depthwise'] ) return layer ## build fpn's reduce layer def build_reduce_layer(cfg, in_dim, out_dim): if cfg['fpn_reduce_layer'] == 'conv': layer = Conv(in_dim, out_dim, k=1, act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm']) return layer ## build fpn's downsample layer def build_downsample_layer(cfg, in_dim, out_dim): if cfg['fpn_downsample_layer'] == 'conv': layer = Conv(in_dim, out_dim, k=3, s=2, p=1, act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'], depthwise=cfg['fpn_depthwise']) elif cfg['fpn_downsample_layer'] == 'maxpool': assert in_dim == out_dim layer = nn.MaxPool2d((2, 2), stride=2) elif cfg['fpn_downsample_layer'] == 'dsblock': layer = DSBlock(in_dim, out_dim, num_heads=cfg['fpn_num_heads'], act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'], depthwise=cfg['fpn_depthwise']) return layer