| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- import torch
- import torch.nn as nn
- try:
- from .yolov3_basic import Conv, ResBlock
- except:
- from yolov3_basic import Conv, ResBlock
-
- model_urls = {
- "darknet_tiny": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/darknet_tiny.pth",
- "darknet53": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/darknet53_silu.pth",
- }
- # --------------------- DarkNet-53 -----------------------
- ## DarkNet-53
- class DarkNet53(nn.Module):
- def __init__(self, act_type='silu', norm_type='BN'):
- super(DarkNet53, self).__init__()
- self.feat_dims = [256, 512, 1024]
- # P1
- self.layer_1 = nn.Sequential(
- Conv(3, 32, k=3, p=1, act_type=act_type, norm_type=norm_type),
- Conv(32, 64, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- ResBlock(64, 64, nblocks=1, act_type=act_type, norm_type=norm_type)
- )
- # P2
- self.layer_2 = nn.Sequential(
- Conv(64, 128, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- ResBlock(128, 128, nblocks=2, act_type=act_type, norm_type=norm_type)
- )
- # P3
- self.layer_3 = nn.Sequential(
- Conv(128, 256, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- ResBlock(256, 256, nblocks=8, act_type=act_type, norm_type=norm_type)
- )
- # P4
- self.layer_4 = nn.Sequential(
- Conv(256, 512, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- ResBlock(512, 512, nblocks=8, act_type=act_type, norm_type=norm_type)
- )
- # P5
- self.layer_5 = nn.Sequential(
- Conv(512, 1024, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- ResBlock(1024, 1024, nblocks=4, act_type=act_type, norm_type=norm_type)
- )
- def forward(self, x):
- c1 = self.layer_1(x)
- c2 = self.layer_2(c1)
- c3 = self.layer_3(c2)
- c4 = self.layer_4(c3)
- c5 = self.layer_5(c4)
- outputs = [c3, c4, c5]
- return outputs
- ## DarkNet-Tiny
- class DarkNetTiny(nn.Module):
- def __init__(self, act_type='silu', norm_type='BN'):
- super(DarkNetTiny, self).__init__()
- self.feat_dims = [64, 128, 256]
- # stride = 2
- self.layer_1 = nn.Sequential(
- Conv(3, 16, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- ResBlock(16, 16, nblocks=1, act_type=act_type, norm_type=norm_type)
- )
- # stride = 4
- self.layer_2 = nn.Sequential(
- Conv(16, 32, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- ResBlock(32, 32, nblocks=1, act_type=act_type, norm_type=norm_type)
- )
- # stride = 8
- self.layer_3 = nn.Sequential(
- Conv(32, 64, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- ResBlock(64, 64, nblocks=3, act_type=act_type, norm_type=norm_type)
- )
- # stride = 16
- self.layer_4 = nn.Sequential(
- Conv(64, 128, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- ResBlock(128, 128, nblocks=3, act_type=act_type, norm_type=norm_type)
- )
- # stride = 32
- self.layer_5 = nn.Sequential(
- Conv(128, 256, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- ResBlock(256, 256, nblocks=2, act_type=act_type, norm_type=norm_type)
- )
- def forward(self, x):
- c1 = self.layer_1(x)
- c2 = self.layer_2(c1)
- c3 = self.layer_3(c2)
- c4 = self.layer_4(c3)
- c5 = self.layer_5(c4)
- outputs = [c3, c4, c5]
- return outputs
- # --------------------- Functions -----------------------
- def build_backbone(model_name='darknet53', pretrained=False):
- """Constructs a darknet-53 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- """
- if model_name == 'darknet53':
- backbone = DarkNet53(act_type='silu', norm_type='BN')
- feat_dims = backbone.feat_dims
- elif model_name == 'darknet_tiny':
- backbone = DarkNetTiny(act_type='silu', norm_type='BN')
- feat_dims = backbone.feat_dims
- if pretrained:
- url = model_urls[model_name]
- if url is not None:
- print('Loading pretrained weight ...')
- checkpoint = torch.hub.load_state_dict_from_url(
- url=url, map_location="cpu", check_hash=True)
- # checkpoint state dict
- checkpoint_state_dict = checkpoint.pop("model")
- # model state dict
- model_state_dict = backbone.state_dict()
- # check
- for k in list(checkpoint_state_dict.keys()):
- if k in model_state_dict:
- shape_model = tuple(model_state_dict[k].shape)
- shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
- if shape_model != shape_checkpoint:
- checkpoint_state_dict.pop(k)
- else:
- checkpoint_state_dict.pop(k)
- print('Unused key: ', k)
- backbone.load_state_dict(checkpoint_state_dict)
- else:
- print('No backbone pretrained: DarkNet53')
- return backbone, feat_dims
- if __name__ == '__main__':
- import time
- from thop import profile
- model, feats = build_backbone(model_name='darknet53', pretrained=True)
- x = torch.randn(1, 3, 640, 640)
- t0 = time.time()
- outputs = model(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- for out in outputs:
- print(out.shape)
- print('==============================')
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|