import torch import torch.nn as nn try: from .yolov3_basic import Conv, ResBlock except: from yolov3_basic import Conv, ResBlock model_urls = { "darknet_tiny": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/darknet_tiny.pth", "darknet53": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/darknet53_silu.pth", } # --------------------- DarkNet-53 ----------------------- ## DarkNet-53 class DarkNet53(nn.Module): def __init__(self, act_type='silu', norm_type='BN'): super(DarkNet53, self).__init__() self.feat_dims = [256, 512, 1024] # P1 self.layer_1 = nn.Sequential( Conv(3, 32, k=3, p=1, act_type=act_type, norm_type=norm_type), Conv(32, 64, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), ResBlock(64, 64, nblocks=1, act_type=act_type, norm_type=norm_type) ) # P2 self.layer_2 = nn.Sequential( Conv(64, 128, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), ResBlock(128, 128, nblocks=2, act_type=act_type, norm_type=norm_type) ) # P3 self.layer_3 = nn.Sequential( Conv(128, 256, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), ResBlock(256, 256, nblocks=8, act_type=act_type, norm_type=norm_type) ) # P4 self.layer_4 = nn.Sequential( Conv(256, 512, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), ResBlock(512, 512, nblocks=8, act_type=act_type, norm_type=norm_type) ) # P5 self.layer_5 = nn.Sequential( Conv(512, 1024, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), ResBlock(1024, 1024, nblocks=4, act_type=act_type, norm_type=norm_type) ) def forward(self, x): c1 = self.layer_1(x) c2 = self.layer_2(c1) c3 = self.layer_3(c2) c4 = self.layer_4(c3) c5 = self.layer_5(c4) outputs = [c3, c4, c5] return outputs ## DarkNet-Tiny class DarkNetTiny(nn.Module): def __init__(self, act_type='silu', norm_type='BN'): super(DarkNetTiny, self).__init__() self.feat_dims = [64, 128, 256] # stride = 2 self.layer_1 = nn.Sequential( Conv(3, 16, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), ResBlock(16, 16, nblocks=1, act_type=act_type, norm_type=norm_type) ) # stride = 4 self.layer_2 = nn.Sequential( Conv(16, 32, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), ResBlock(32, 32, nblocks=1, act_type=act_type, norm_type=norm_type) ) # stride = 8 self.layer_3 = nn.Sequential( Conv(32, 64, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), ResBlock(64, 64, nblocks=3, act_type=act_type, norm_type=norm_type) ) # stride = 16 self.layer_4 = nn.Sequential( Conv(64, 128, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), ResBlock(128, 128, nblocks=3, act_type=act_type, norm_type=norm_type) ) # stride = 32 self.layer_5 = nn.Sequential( Conv(128, 256, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), ResBlock(256, 256, nblocks=2, act_type=act_type, norm_type=norm_type) ) def forward(self, x): c1 = self.layer_1(x) c2 = self.layer_2(c1) c3 = self.layer_3(c2) c4 = self.layer_4(c3) c5 = self.layer_5(c4) outputs = [c3, c4, c5] return outputs # --------------------- Functions ----------------------- def build_backbone(model_name='darknet53', pretrained=False): """Constructs a darknet-53 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ if model_name == 'darknet53': backbone = DarkNet53(act_type='silu', norm_type='BN') feat_dims = backbone.feat_dims elif model_name == 'darknet_tiny': backbone = DarkNetTiny(act_type='silu', norm_type='BN') feat_dims = backbone.feat_dims if pretrained: url = model_urls[model_name] if url is not None: print('Loading pretrained weight ...') checkpoint = torch.hub.load_state_dict_from_url( url=url, map_location="cpu", check_hash=True) # checkpoint state dict checkpoint_state_dict = checkpoint.pop("model") # model state dict model_state_dict = backbone.state_dict() # check for k in list(checkpoint_state_dict.keys()): if k in model_state_dict: shape_model = tuple(model_state_dict[k].shape) shape_checkpoint = tuple(checkpoint_state_dict[k].shape) if shape_model != shape_checkpoint: checkpoint_state_dict.pop(k) else: checkpoint_state_dict.pop(k) print('Unused key: ', k) backbone.load_state_dict(checkpoint_state_dict) else: print('No backbone pretrained: DarkNet53') return backbone, feat_dims if __name__ == '__main__': import time from thop import profile model, feats = build_backbone(model_name='darknet53', pretrained=True) x = torch.randn(1, 3, 640, 640) t0 = time.time() outputs = model(x) t1 = time.time() print('Time: ', t1 - t0) for out in outputs: print(out.shape) print('==============================') flops, params = profile(model, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))