| 123456789101112131415161718192021 |
- import math
- import torch
- def build_lr_scheduler(cfg, optimizer, epochs):
- """Build learning rate scheduler from cfg file."""
- print('==============================')
- print('Lr Scheduler: {}'.format(cfg['scheduler']))
- # Cosine LR scheduler
- if cfg['scheduler'] == 'cosine':
- lf = lambda x: ((1 - math.cos(x * math.pi / epochs)) / 2) * (cfg['lrf'] - 1) + 1
- # Linear LR scheduler
- elif cfg['scheduler'] == 'linear':
- lf = lambda x: (1 - x / epochs) * (1.0 - cfg['lrf']) + cfg['lrf']
- else:
- print('unknown lr scheduler.')
- exit(0)
- scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
- return scheduler, lf
|