| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from .yolov7_basic import Conv, ELANBlockFPN, DownSample
- # PaFPN-ELAN (YOLOv7's)
- class Yolov7PaFPN(nn.Module):
- def __init__(self,
- in_dims=[512, 1024, 512],
- out_dim=None,
- channel_width : float = 1.0,
- branch_width : int = 4.0,
- branch_depth : int = 1.0,
- act_type='silu',
- norm_type='BN',
- depthwise=False):
- super(Yolov7PaFPN, self).__init__()
- # ----------------------------- Basic parameters -----------------------------
- self.fpn_dims = in_dims
- self.channel_width = channel_width
- self.branch_width = branch_width
- self.branch_depth = branch_depth
- c3, c4, c5 = self.fpn_dims
- # ----------------------------- Top-down FPN -----------------------------
- ## P5 -> P4
- self.reduce_layer_1 = Conv(c5, round(256*channel_width), k=1, norm_type=norm_type, act_type=act_type)
- self.reduce_layer_2 = Conv(c4, round(256*channel_width), k=1, norm_type=norm_type, act_type=act_type)
- self.top_down_layer_1 = ELANBlockFPN(in_dim=round(256*channel_width) + round(256*channel_width),
- out_dim=round(256*channel_width),
- squeeze_ratio=0.5,
- branch_width=branch_width,
- branch_depth=branch_depth,
- act_type=act_type,
- norm_type=norm_type,
- depthwise=depthwise
- )
- ## P4 -> P3
- self.reduce_layer_3 = Conv(round(256*channel_width), round(128*channel_width), k=1, norm_type=norm_type, act_type=act_type)
- self.reduce_layer_4 = Conv(c3, round(128*channel_width), k=1, norm_type=norm_type, act_type=act_type)
- self.top_down_layer_2 = ELANBlockFPN(in_dim=round(128*channel_width) + round(128*channel_width),
- out_dim=round(128*channel_width),
- squeeze_ratio=0.5,
- branch_width=branch_width,
- branch_depth=branch_depth,
- act_type=act_type,
- norm_type=norm_type,
- depthwise=depthwise
- )
- # ----------------------------- Bottom-up FPN -----------------------------
- ## P3 -> P4
- self.downsample_layer_1 = DownSample(round(128*channel_width), round(256*channel_width), act_type, norm_type, depthwise)
- self.bottom_up_layer_1 = ELANBlockFPN(in_dim=round(256*channel_width) + round(256*channel_width),
- out_dim=round(256*channel_width),
- squeeze_ratio=0.5,
- branch_width=branch_width,
- branch_depth=branch_depth,
- act_type=act_type,
- norm_type=norm_type,
- depthwise=depthwise
- )
- ## P4 -> P5
- self.downsample_layer_2 = DownSample(round(256*channel_width), round(512*channel_width), act_type, norm_type, depthwise)
- self.bottom_up_layer_2 = ELANBlockFPN(in_dim=round(512*channel_width) + c5,
- out_dim=round(512*channel_width),
- squeeze_ratio=0.5,
- branch_width=branch_width,
- branch_depth=branch_depth,
- act_type=act_type,
- norm_type=norm_type,
- depthwise=depthwise
- )
- # ----------------------------- Output Proj -----------------------------
- ## Head convs
- self.head_conv_1 = Conv(round(128*channel_width), round(256*channel_width), k=3, s=1, p=1, act_type=act_type, norm_type=norm_type)
- self.head_conv_2 = Conv(round(256*channel_width), round(512*channel_width), k=3, s=1, p=1, act_type=act_type, norm_type=norm_type)
- self.head_conv_3 = Conv(round(512*channel_width), round(1024*channel_width), k=3, s=1, p=1, act_type=act_type, norm_type=norm_type)
- ## Output projs
- if out_dim is not None:
- self.out_layers = nn.ModuleList([
- Conv(in_dim, out_dim, k=1, act_type=act_type, norm_type=norm_type)
- for in_dim in [round(256*channel_width), round(512*channel_width), round(1024*channel_width)]
- ])
- self.out_dim = [out_dim] * 3
- else:
- self.out_layers = None
- self.out_dim = [round(256*channel_width), round(512*channel_width), round(1024*channel_width)]
- def forward(self, features):
- c3, c4, c5 = features
- # Top down
- ## P5 -> P4
- c6 = self.reduce_layer_1(c5)
- c7 = F.interpolate(c6, scale_factor=2.0)
- c8 = torch.cat([c7, self.reduce_layer_2(c4)], dim=1)
- c9 = self.top_down_layer_1(c8)
- ## P4 -> P3
- c10 = self.reduce_layer_3(c9)
- c11 = F.interpolate(c10, scale_factor=2.0)
- c12 = torch.cat([c11, self.reduce_layer_4(c3)], dim=1)
- c13 = self.top_down_layer_2(c12)
- # Bottom up
- ## p3 -> P4
- c14 = self.downsample_layer_1(c13)
- c15 = torch.cat([c14, c9], dim=1)
- c16 = self.bottom_up_layer_1(c15)
- ## P4 -> P5
- c17 = self.downsample_layer_2(c16)
- c18 = torch.cat([c17, c5], dim=1)
- c19 = self.bottom_up_layer_2(c18)
- c20 = self.head_conv_1(c13)
- c21 = self.head_conv_2(c16)
- c22 = self.head_conv_3(c19)
- out_feats = [c20, c21, c22] # [P3, P4, P5]
-
- # output proj layers
- if self.out_layers is not None:
- out_feats_proj = []
- for feat, layer in zip(out_feats, self.out_layers):
- out_feats_proj.append(layer(feat))
- return out_feats_proj
- return out_feats
- def build_fpn(cfg, in_dims, out_dim=None):
- model = cfg['fpn']
- # build pafpn
- if model == 'yolov7_pafpn':
- fpn_net = Yolov7PaFPN(in_dims = in_dims,
- out_dim = out_dim,
- channel_width = cfg['channel_width'],
- branch_width = cfg['branch_width'],
- branch_depth = cfg['branch_depth'],
- act_type = cfg['fpn_act'],
- norm_type = cfg['fpn_norm'],
- depthwise = cfg['fpn_depthwise']
- )
- return fpn_net
|