yolov7.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269
  1. import torch
  2. import torch.nn as nn
  3. from utils.misc import multiclass_nms
  4. from .yolov7_backbone import build_backbone
  5. from .yolov7_neck import build_neck
  6. from .yolov7_pafpn import build_fpn
  7. from .yolov7_head import build_head
  8. # YOLOv7
  9. class YOLOv7(nn.Module):
  10. def __init__(self,
  11. cfg,
  12. device,
  13. num_classes=20,
  14. conf_thresh=0.01,
  15. topk=100,
  16. nms_thresh=0.5,
  17. trainable=False,
  18. deploy = False):
  19. super(YOLOv7, self).__init__()
  20. # ------------------- Basic parameters -------------------
  21. self.cfg = cfg # 模型配置文件
  22. self.device = device # cuda或者是cpu
  23. self.num_classes = num_classes # 类别的数量
  24. self.trainable = trainable # 训练的标记
  25. self.conf_thresh = conf_thresh # 得分阈值
  26. self.nms_thresh = nms_thresh # NMS阈值
  27. self.topk = topk # topk
  28. self.stride = [8, 16, 32] # 网络的输出步长
  29. self.deploy = deploy
  30. # ------------------- Network Structure -------------------
  31. ## 主干网络
  32. self.backbone, feats_dim = build_backbone(cfg, trainable&cfg['pretrained'])
  33. ## 颈部网络: SPP模块
  34. self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1]//2)
  35. feats_dim[-1] = self.neck.out_dim
  36. ## 颈部网络: 特征金字塔
  37. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=round(256*cfg['channel_width']))
  38. self.head_dim = self.fpn.out_dim
  39. ## 检测头
  40. self.non_shared_heads = nn.ModuleList(
  41. [build_head(cfg, head_dim, head_dim, num_classes)
  42. for head_dim in self.head_dim
  43. ])
  44. ## 预测层
  45. self.obj_preds = nn.ModuleList(
  46. [nn.Conv2d(head.reg_out_dim, 1, kernel_size=1)
  47. for head in self.non_shared_heads
  48. ])
  49. self.cls_preds = nn.ModuleList(
  50. [nn.Conv2d(head.cls_out_dim, self.num_classes, kernel_size=1)
  51. for head in self.non_shared_heads
  52. ])
  53. self.reg_preds = nn.ModuleList(
  54. [nn.Conv2d(head.reg_out_dim, 4, kernel_size=1)
  55. for head in self.non_shared_heads
  56. ])
  57. # ---------------------- Basic Functions ----------------------
  58. ## generate anchor points
  59. def generate_anchors(self, level, fmp_size):
  60. """
  61. fmp_size: (List) [H, W]
  62. """
  63. # generate grid cells
  64. fmp_h, fmp_w = fmp_size
  65. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  66. # [H, W, 2] -> [HW, 2]
  67. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  68. anchor_xy += 0.5 # add center offset
  69. anchor_xy *= self.stride[level]
  70. anchors = anchor_xy.to(self.device)
  71. return anchors
  72. ## post-process
  73. def post_process(self, obj_preds, cls_preds, box_preds):
  74. """
  75. Input:
  76. obj_preds: List(Tensor) [[H x W, 1], ...]
  77. cls_preds: List(Tensor) [[H x W, C], ...]
  78. box_preds: List(Tensor) [[H x W, 4], ...]
  79. anchors: List(Tensor) [[H x W, 2], ...]
  80. """
  81. all_scores = []
  82. all_labels = []
  83. all_bboxes = []
  84. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  85. # (H x W x KA x C,)
  86. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  87. # Keep top k top scoring indices only.
  88. num_topk = min(self.topk, box_pred_i.size(0))
  89. # torch.sort is actually faster than .topk (at least on GPUs)
  90. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  91. topk_scores = predicted_prob[:num_topk]
  92. topk_idxs = topk_idxs[:num_topk]
  93. # filter out the proposals with low confidence score
  94. keep_idxs = topk_scores > self.conf_thresh
  95. scores = topk_scores[keep_idxs]
  96. topk_idxs = topk_idxs[keep_idxs]
  97. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  98. labels = topk_idxs % self.num_classes
  99. bboxes = box_pred_i[anchor_idxs]
  100. all_scores.append(scores)
  101. all_labels.append(labels)
  102. all_bboxes.append(bboxes)
  103. scores = torch.cat(all_scores)
  104. labels = torch.cat(all_labels)
  105. bboxes = torch.cat(all_bboxes)
  106. # to cpu & numpy
  107. scores = scores.cpu().numpy()
  108. labels = labels.cpu().numpy()
  109. bboxes = bboxes.cpu().numpy()
  110. # nms
  111. scores, labels, bboxes = multiclass_nms(
  112. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  113. return bboxes, scores, labels
  114. # ---------------------- Main Process for Inference ----------------------
  115. @torch.no_grad()
  116. def inference_single_image(self, x):
  117. # 主干网络
  118. pyramid_feats = self.backbone(x)
  119. # 颈部网络
  120. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  121. # 特征金字塔
  122. pyramid_feats = self.fpn(pyramid_feats)
  123. # 检测头
  124. all_obj_preds = []
  125. all_cls_preds = []
  126. all_box_preds = []
  127. all_anchors = []
  128. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  129. cls_feat, reg_feat = head(feat)
  130. # [1, C, H, W]
  131. obj_pred = self.obj_preds[level](reg_feat)
  132. cls_pred = self.cls_preds[level](cls_feat)
  133. reg_pred = self.reg_preds[level](reg_feat)
  134. # anchors: [M, 2]
  135. fmp_size = cls_pred.shape[-2:]
  136. anchors = self.generate_anchors(level, fmp_size)
  137. # [1, C, H, W] -> [H, W, C] -> [M, C]
  138. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  139. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  140. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  141. # decode bbox
  142. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  143. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  144. pred_x1y1 = ctr_pred - wh_pred * 0.5
  145. pred_x2y2 = ctr_pred + wh_pred * 0.5
  146. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  147. all_obj_preds.append(obj_pred)
  148. all_cls_preds.append(cls_pred)
  149. all_box_preds.append(box_pred)
  150. all_anchors.append(anchors)
  151. if self.deploy:
  152. obj_preds = torch.cat(all_obj_preds, dim=0)
  153. cls_preds = torch.cat(all_cls_preds, dim=0)
  154. box_preds = torch.cat(all_box_preds, dim=0)
  155. scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid())
  156. bboxes = box_preds
  157. # [n_anchors_all, 4 + C]
  158. outputs = torch.cat([bboxes, scores], dim=-1)
  159. return outputs
  160. else:
  161. # post process
  162. bboxes, scores, labels = self.post_process(
  163. all_obj_preds, all_cls_preds, all_box_preds)
  164. return bboxes, scores, labels
  165. # ---------------------- Main Process for Training ----------------------
  166. def forward(self, x):
  167. if not self.trainable:
  168. return self.inference_single_image(x)
  169. else:
  170. # 主干网络
  171. pyramid_feats = self.backbone(x)
  172. # 颈部网络
  173. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  174. # 特征金字塔
  175. pyramid_feats = self.fpn(pyramid_feats)
  176. # 检测头
  177. all_anchors = []
  178. all_strides = []
  179. all_obj_preds = []
  180. all_cls_preds = []
  181. all_box_preds = []
  182. all_reg_preds = []
  183. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  184. cls_feat, reg_feat = head(feat)
  185. # [B, C, H, W]
  186. obj_pred = self.obj_preds[level](reg_feat)
  187. cls_pred = self.cls_preds[level](cls_feat)
  188. reg_pred = self.reg_preds[level](reg_feat)
  189. B, _, H, W = cls_pred.size()
  190. fmp_size = [H, W]
  191. # generate anchor boxes: [M, 4]
  192. anchors = self.generate_anchors(level, fmp_size)
  193. # stride tensor: [M, 1]
  194. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride[level]
  195. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  196. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  197. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  198. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  199. # decode bbox
  200. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  201. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  202. pred_x1y1 = ctr_pred - wh_pred * 0.5
  203. pred_x2y2 = ctr_pred + wh_pred * 0.5
  204. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  205. all_obj_preds.append(obj_pred)
  206. all_cls_preds.append(cls_pred)
  207. all_box_preds.append(box_pred)
  208. all_reg_preds.append(reg_pred)
  209. all_anchors.append(anchors)
  210. all_strides.append(stride_tensor)
  211. # output dict
  212. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  213. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  214. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  215. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4]
  216. "anchors": all_anchors, # List(Tensor) [M, 2]
  217. "strides": self.stride, # List(Int) [8, 16, 32]
  218. "stride_tensors": all_strides # List(Tensor) [M, 1]
  219. }
  220. return outputs