| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- import math
- import torch
- import torch.nn as nn
- def build_det_pred(cls_dim, reg_dim, stride, num_classes, num_coords=4):
- pred_layers = SDetPDLayer(cls_dim = cls_dim,
- reg_dim = reg_dim,
- stride = stride,
- num_classes = num_classes,
- num_coords = num_coords)
- return pred_layers
- # ---------------------------- Detection predictor ----------------------------
- ## Single-level Detection Prediction Layer
- class SDetPDLayer(nn.Module):
- def __init__(self,
- cls_dim :int = 256,
- reg_dim :int = 256,
- stride :int = 32,
- num_classes :int = 80,
- num_coords :int = 4):
- super().__init__()
- # --------- Basic Parameters ----------
- self.stride = stride
- self.cls_dim = cls_dim
- self.reg_dim = reg_dim
- self.num_classes = num_classes
- self.num_coords = num_coords
- # --------- Network Parameters ----------
- self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
- self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
- self.init_bias()
-
- def init_bias(self):
- # cls pred bias
- b = self.cls_pred.bias.view(1, -1)
- b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
- self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # reg pred bias
- b = self.reg_pred.bias.view(-1, )
- b.data.fill_(1.0)
- self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- def generate_anchors(self, fmp_size):
- """
- fmp_size: (List) [H, W]
- """
- # generate grid cells
- fmp_h, fmp_w = fmp_size
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- # [H, W, 2] -> [HW, 2]
- anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
- anchors += 0.5 # add center offset
- anchors *= self.stride
- return anchors
-
- def forward(self, inputs):
- cls_feat, reg_feat = inputs['cls_feat'], inputs['reg_feat']
- # pred
- cls_pred = self.cls_pred(cls_feat)
- reg_pred = self.reg_pred(reg_feat)
- # generate anchor boxes: [M, 4]
- B, _, H, W = cls_pred.size()
- fmp_size = [H, W]
- anchors = self.generate_anchors(fmp_size)
- anchors = anchors.to(cls_pred.device)
- # stride tensor: [M, 1]
- stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
-
- # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
- # ---------------- Decode bbox ----------------
- ctr_pred = reg_pred[..., :2] * self.stride + anchors[..., :2]
- wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride
- pred_x1y1 = ctr_pred - wh_pred * 0.5
- pred_x2y2 = ctr_pred + wh_pred * 0.5
- box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
- # output dict
- outputs = {"pred_cls": cls_pred, # (Tensor) [B, M, C]
- "pred_reg": reg_pred, # (Tensor) [B, M, 4]
- "pred_box": box_pred, # (Tensor) [B, M, 4]
- "anchors": anchors, # (Tensor) [M, 2]
- "stride": self.stride, # (Int)
- "stride_tensors": stride_tensor # List(Tensor) [M, 1]
- }
- return outputs
|