import math import torch import torch.nn as nn def build_det_pred(cls_dim, reg_dim, stride, num_classes, num_coords=4): pred_layers = SDetPDLayer(cls_dim = cls_dim, reg_dim = reg_dim, stride = stride, num_classes = num_classes, num_coords = num_coords) return pred_layers # ---------------------------- Detection predictor ---------------------------- ## Single-level Detection Prediction Layer class SDetPDLayer(nn.Module): def __init__(self, cls_dim :int = 256, reg_dim :int = 256, stride :int = 32, num_classes :int = 80, num_coords :int = 4): super().__init__() # --------- Basic Parameters ---------- self.stride = stride self.cls_dim = cls_dim self.reg_dim = reg_dim self.num_classes = num_classes self.num_coords = num_coords # --------- Network Parameters ---------- self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1) self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1) self.init_bias() def init_bias(self): # cls pred bias b = self.cls_pred.bias.view(1, -1) b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2)) self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) # reg pred bias b = self.reg_pred.bias.view(-1, ) b.data.fill_(1.0) self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) def generate_anchors(self, fmp_size): """ fmp_size: (List) [H, W] """ # generate grid cells fmp_h, fmp_w = fmp_size anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)]) # [H, W, 2] -> [HW, 2] anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) anchors += 0.5 # add center offset anchors *= self.stride return anchors def forward(self, inputs): cls_feat, reg_feat = inputs['cls_feat'], inputs['reg_feat'] # pred cls_pred = self.cls_pred(cls_feat) reg_pred = self.reg_pred(reg_feat) # generate anchor boxes: [M, 4] B, _, H, W = cls_pred.size() fmp_size = [H, W] anchors = self.generate_anchors(fmp_size) anchors = anchors.to(cls_pred.device) # stride tensor: [M, 1] stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride # [B, C, H, W] -> [B, H, W, C] -> [B, M, C] cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes) reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4) # ---------------- Decode bbox ---------------- ctr_pred = reg_pred[..., :2] * self.stride + anchors[..., :2] wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride pred_x1y1 = ctr_pred - wh_pred * 0.5 pred_x2y2 = ctr_pred + wh_pred * 0.5 box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1) # output dict outputs = {"pred_cls": cls_pred, # (Tensor) [B, M, C] "pred_reg": reg_pred, # (Tensor) [B, M, 4] "pred_box": box_pred, # (Tensor) [B, M, 4] "anchors": anchors, # (Tensor) [M, 2] "stride": self.stride, # (Int) "stride_tensors": stride_tensor # List(Tensor) [M, 1] } return outputs