yolov7_config.py 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. # YOLOv7 Config
  2. yolov7_cfg = {
  3. 'yolov7_t':{
  4. # input
  5. 'trans_type': 'yolov5_tiny',
  6. 'multi_scale': [0.5, 1.5], # 320 -> 960
  7. # model
  8. 'backbone': 'elannet_tiny',
  9. 'pretrained': True,
  10. 'bk_act': 'silu',
  11. 'bk_norm': 'BN',
  12. 'bk_dpw': False,
  13. 'stride': [8, 16, 32], # P3, P4, P5
  14. 'max_stride': 32,
  15. # neck
  16. 'neck': 'csp_sppf',
  17. 'expand_ratio': 0.5,
  18. 'pooling_size': 5,
  19. 'neck_act': 'silu',
  20. 'neck_norm': 'BN',
  21. 'neck_depthwise': False,
  22. # fpn
  23. 'fpn': 'yolov7_pafpn',
  24. 'fpn_act': 'silu',
  25. 'fpn_norm': 'BN',
  26. 'fpn_depthwise': False,
  27. 'nbranch': 2.0, # number of branch in ELANBlockFPN
  28. 'depth': 1.0, # depth factor of each branch in ELANBlockFPN
  29. 'width': 0.5, # width factor of channel in FPN
  30. # head
  31. 'head': 'decoupled_head',
  32. 'head_act': 'silu',
  33. 'head_norm': 'BN',
  34. 'num_cls_head': 2,
  35. 'num_reg_head': 2,
  36. 'head_depthwise': False,
  37. # matcher
  38. 'matcher': {'center_sampling_radius': 2.5,
  39. 'topk_candicate': 10},
  40. # loss weight
  41. 'loss_obj_weight': 1.0,
  42. 'loss_cls_weight': 1.0,
  43. 'loss_box_weight': 5.0,
  44. # training configuration
  45. 'no_aug_epoch': 20,
  46. # optimizer
  47. 'optimizer': 'sgd', # optional: sgd, adam, adamw
  48. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  49. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  50. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  51. # model EMA
  52. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  53. 'ema_tau': 2000,
  54. # lr schedule
  55. 'scheduler': 'linear',
  56. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  57. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  58. 'warmup_momentum': 0.8,
  59. 'warmup_bias_lr': 0.1,
  60. },
  61. 'yolov7_l':{
  62. # input
  63. 'trans_type': 'yolov5_large',
  64. 'multi_scale': [0.5, 1.25], # 320 -> 800
  65. # model
  66. 'backbone': 'elannet_large',
  67. 'pretrained': True,
  68. 'bk_act': 'silu',
  69. 'bk_norm': 'BN',
  70. 'bk_dpw': False,
  71. 'stride': [8, 16, 32], # P3, P4, P5
  72. 'max_stride': 32,
  73. # neck
  74. 'neck': 'csp_sppf',
  75. 'expand_ratio': 0.5,
  76. 'pooling_size': 5,
  77. 'neck_act': 'silu',
  78. 'neck_norm': 'BN',
  79. 'neck_depthwise': False,
  80. # fpn
  81. 'fpn': 'yolov7_pafpn',
  82. 'fpn_act': 'silu',
  83. 'fpn_norm': 'BN',
  84. 'fpn_depthwise': False,
  85. 'nbranch': 4.0, # number of branch in ELANBlockFPN
  86. 'depth': 1.0, # depth factor of each branch in ELANBlockFPN
  87. 'width': 1.0, # width factor of channel in FPN
  88. # head
  89. 'head': 'decoupled_head',
  90. 'head_act': 'silu',
  91. 'head_norm': 'BN',
  92. 'num_cls_head': 2,
  93. 'num_reg_head': 2,
  94. 'head_depthwise': False,
  95. # matcher
  96. 'matcher': {'center_sampling_radius': 2.5,
  97. 'topk_candicate': 10},
  98. # loss weight
  99. 'loss_obj_weight': 1.0,
  100. 'loss_cls_weight': 1.0,
  101. 'loss_box_weight': 5.0,
  102. # training configuration
  103. 'no_aug_epoch': 20,
  104. # optimizer
  105. 'optimizer': 'sgd', # optional: sgd, adam, adamw
  106. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  107. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  108. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  109. # model EMA
  110. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  111. 'ema_tau': 2000,
  112. # lr schedule
  113. 'scheduler': 'linear',
  114. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  115. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  116. 'warmup_momentum': 0.8,
  117. 'warmup_bias_lr': 0.1,
  118. },
  119. 'yolov7_x':{
  120. # input
  121. 'trans_type': 'yolov5_huge',
  122. 'multi_scale': [0.5, 1.25], # 320 -> 640
  123. # model
  124. 'backbone': 'elannet_huge',
  125. 'pretrained': True,
  126. 'bk_act': 'silu',
  127. 'bk_norm': 'BN',
  128. 'bk_dpw': False,
  129. 'stride': [8, 16, 32], # P3, P4, P5
  130. 'max_stride': 32,
  131. # neck
  132. 'neck': 'csp_sppf',
  133. 'expand_ratio': 0.5,
  134. 'pooling_size': 5,
  135. 'neck_act': 'silu',
  136. 'neck_norm': 'BN',
  137. 'neck_depthwise': False,
  138. # fpn
  139. 'fpn': 'yolov7_pafpn',
  140. 'fpn_act': 'silu',
  141. 'fpn_norm': 'BN',
  142. 'fpn_depthwise': False,
  143. 'nbranch': 4.0, # number of branch in ELANBlockFPN
  144. 'depth': 2.0, # depth factor of each branch in ELANBlockFPN
  145. 'width': 1.25, # width factor of channel in FPN
  146. # head
  147. 'head': 'decoupled_head',
  148. 'head_act': 'silu',
  149. 'head_norm': 'BN',
  150. 'num_cls_head': 2,
  151. 'num_reg_head': 2,
  152. 'head_depthwise': False,
  153. # matcher
  154. 'matcher': {'center_sampling_radius': 2.5,
  155. 'topk_candicate': 10},
  156. # loss weight
  157. 'loss_obj_weight': 1.0,
  158. 'loss_cls_weight': 1.0,
  159. 'loss_box_weight': 5.0,
  160. # training configuration
  161. 'no_aug_epoch': 20,
  162. # optimizer
  163. 'optimizer': 'sgd', # optional: sgd, adam, adamw
  164. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  165. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  166. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  167. # model EMA
  168. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  169. 'ema_tau': 2000,
  170. # lr schedule
  171. 'scheduler': 'linear',
  172. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  173. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  174. 'warmup_momentum': 0.8,
  175. 'warmup_bias_lr': 0.1,
  176. },
  177. }