# YOLOv7 Config yolov7_cfg = { 'yolov7_t':{ # input 'trans_type': 'yolov5_tiny', 'multi_scale': [0.5, 1.5], # 320 -> 960 # model 'backbone': 'elannet_tiny', 'pretrained': True, 'bk_act': 'silu', 'bk_norm': 'BN', 'bk_dpw': False, 'stride': [8, 16, 32], # P3, P4, P5 'max_stride': 32, # neck 'neck': 'csp_sppf', 'expand_ratio': 0.5, 'pooling_size': 5, 'neck_act': 'silu', 'neck_norm': 'BN', 'neck_depthwise': False, # fpn 'fpn': 'yolov7_pafpn', 'fpn_act': 'silu', 'fpn_norm': 'BN', 'fpn_depthwise': False, 'nbranch': 2.0, # number of branch in ELANBlockFPN 'depth': 1.0, # depth factor of each branch in ELANBlockFPN 'width': 0.5, # width factor of channel in FPN # head 'head': 'decoupled_head', 'head_act': 'silu', 'head_norm': 'BN', 'num_cls_head': 2, 'num_reg_head': 2, 'head_depthwise': False, # matcher 'matcher': {'center_sampling_radius': 2.5, 'topk_candicate': 10}, # loss weight 'loss_obj_weight': 1.0, 'loss_cls_weight': 1.0, 'loss_box_weight': 5.0, # training configuration 'no_aug_epoch': 20, # optimizer 'optimizer': 'sgd', # optional: sgd, adam, adamw 'momentum': 0.937, # SGD: 0.937; AdamW: invalid 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2 'clip_grad': 10, # SGD: 10.0; AdamW: -1 # model EMA 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998 'ema_tau': 2000, # lr schedule 'scheduler': 'linear', 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01 'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1, }, 'yolov7_l':{ # input 'trans_type': 'yolov5_large', 'multi_scale': [0.5, 1.25], # 320 -> 800 # model 'backbone': 'elannet_large', 'pretrained': True, 'bk_act': 'silu', 'bk_norm': 'BN', 'bk_dpw': False, 'stride': [8, 16, 32], # P3, P4, P5 'max_stride': 32, # neck 'neck': 'csp_sppf', 'expand_ratio': 0.5, 'pooling_size': 5, 'neck_act': 'silu', 'neck_norm': 'BN', 'neck_depthwise': False, # fpn 'fpn': 'yolov7_pafpn', 'fpn_act': 'silu', 'fpn_norm': 'BN', 'fpn_depthwise': False, 'nbranch': 4.0, # number of branch in ELANBlockFPN 'depth': 1.0, # depth factor of each branch in ELANBlockFPN 'width': 1.0, # width factor of channel in FPN # head 'head': 'decoupled_head', 'head_act': 'silu', 'head_norm': 'BN', 'num_cls_head': 2, 'num_reg_head': 2, 'head_depthwise': False, # matcher 'matcher': {'center_sampling_radius': 2.5, 'topk_candicate': 10}, # loss weight 'loss_obj_weight': 1.0, 'loss_cls_weight': 1.0, 'loss_box_weight': 5.0, # training configuration 'no_aug_epoch': 20, # optimizer 'optimizer': 'sgd', # optional: sgd, adam, adamw 'momentum': 0.937, # SGD: 0.937; AdamW: invalid 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2 'clip_grad': 10, # SGD: 10.0; AdamW: -1 # model EMA 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998 'ema_tau': 2000, # lr schedule 'scheduler': 'linear', 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01 'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1, }, 'yolov7_x':{ # input 'trans_type': 'yolov5_huge', 'multi_scale': [0.5, 1.25], # 320 -> 640 # model 'backbone': 'elannet_huge', 'pretrained': True, 'bk_act': 'silu', 'bk_norm': 'BN', 'bk_dpw': False, 'stride': [8, 16, 32], # P3, P4, P5 'max_stride': 32, # neck 'neck': 'csp_sppf', 'expand_ratio': 0.5, 'pooling_size': 5, 'neck_act': 'silu', 'neck_norm': 'BN', 'neck_depthwise': False, # fpn 'fpn': 'yolov7_pafpn', 'fpn_act': 'silu', 'fpn_norm': 'BN', 'fpn_depthwise': False, 'nbranch': 4.0, # number of branch in ELANBlockFPN 'depth': 2.0, # depth factor of each branch in ELANBlockFPN 'width': 1.25, # width factor of channel in FPN # head 'head': 'decoupled_head', 'head_act': 'silu', 'head_norm': 'BN', 'num_cls_head': 2, 'num_reg_head': 2, 'head_depthwise': False, # matcher 'matcher': {'center_sampling_radius': 2.5, 'topk_candicate': 10}, # loss weight 'loss_obj_weight': 1.0, 'loss_cls_weight': 1.0, 'loss_box_weight': 5.0, # training configuration 'no_aug_epoch': 20, # optimizer 'optimizer': 'sgd', # optional: sgd, adam, adamw 'momentum': 0.937, # SGD: 0.937; AdamW: invalid 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2 'clip_grad': 10, # SGD: 10.0; AdamW: -1 # model EMA 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998 'ema_tau': 2000, # lr schedule 'scheduler': 'linear', 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01 'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1, }, }