| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from .yolov5_basic import (Conv, build_reduce_layer, build_downsample_layer, build_fpn_block)
- # YOLO-Style PaFPN
- class Yolov5PaFPN(nn.Module):
- def __init__(self, cfg, in_dims=[256, 512, 1024], out_dim=None):
- super(Yolov5PaFPN, self).__init__()
- # --------------------------- Basic Parameters ---------------------------
- self.in_dims = in_dims
- c3, c4, c5 = in_dims
- width = cfg['width']
- # --------------------------- Network Parameters ---------------------------
- ## top dwon
- ### P5 -> P4
- self.reduce_layer_1 = build_reduce_layer(cfg, c5, round(512*width))
- self.top_down_layer_1 = build_fpn_block(cfg, c4 + round(512*width), round(512*width))
- ### P4 -> P3
- self.reduce_layer_2 = build_reduce_layer(cfg, round(512*width), round(256*width))
- self.top_down_layer_2 = build_fpn_block(cfg, c3 + round(256*width), round(256*width))
- ## bottom up
- ### P3 -> P4
- self.downsample_layer_1 = build_downsample_layer(cfg, round(256*width), round(256*width))
- self.bottom_up_layer_1 = build_fpn_block(cfg, round(256*width) + round(256*width), round(512*width))
- ### P4 -> P5
- self.downsample_layer_2 = build_downsample_layer(cfg, round(512*width), round(512*width))
- self.bottom_up_layer_2 = build_fpn_block(cfg, round(512*width) + round(512*width), round(1024*width))
-
- ## output proj layers
- if out_dim is not None:
- self.out_layers = nn.ModuleList([
- Conv(in_dim, out_dim, k=1,
- act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'])
- for in_dim in [round(256*width), round(512*width), round(1024*width)]
- ])
- self.out_dim = [out_dim] * 3
- else:
- self.out_layers = None
- self.out_dim = [round(256*width), round(512*width), round(1024*width)]
- def forward(self, features):
- c3, c4, c5 = features
- # Top down
- ## P5 -> P4
- c6 = self.reduce_layer_1(c5)
- c7 = F.interpolate(c6, scale_factor=2.0)
- c8 = torch.cat([c7, c4], dim=1)
- c9 = self.top_down_layer_1(c8)
- ## P4 -> P3
- c10 = self.reduce_layer_2(c9)
- c11 = F.interpolate(c10, scale_factor=2.0)
- c12 = torch.cat([c11, c3], dim=1)
- c13 = self.top_down_layer_2(c12)
- # Bottom up
- ## p3 -> P4
- c14 = self.downsample_layer_1(c13)
- c15 = torch.cat([c14, c10], dim=1)
- c16 = self.bottom_up_layer_1(c15)
- ## P4 -> P5
- c17 = self.downsample_layer_2(c16)
- c18 = torch.cat([c17, c6], dim=1)
- c19 = self.bottom_up_layer_2(c18)
- out_feats = [c13, c16, c19] # [P3, P4, P5]
-
- # output proj layers
- if self.out_layers is not None:
- out_feats_proj = []
- for feat, layer in zip(out_feats, self.out_layers):
- out_feats_proj.append(layer(feat))
- return out_feats_proj
- return out_feats
- def build_fpn(cfg, in_dims, out_dim=None):
- model = cfg['fpn']
- # build pafpn
- if model == 'yolov5_pafpn':
- fpn_net = Yolov5PaFPN(cfg, in_dims, out_dim)
- return fpn_net
|