import torch import torch.nn as nn import torch.nn.functional as F from .yolov5_basic import (Conv, build_reduce_layer, build_downsample_layer, build_fpn_block) # YOLO-Style PaFPN class Yolov5PaFPN(nn.Module): def __init__(self, cfg, in_dims=[256, 512, 1024], out_dim=None): super(Yolov5PaFPN, self).__init__() # --------------------------- Basic Parameters --------------------------- self.in_dims = in_dims c3, c4, c5 = in_dims width = cfg['width'] # --------------------------- Network Parameters --------------------------- ## top dwon ### P5 -> P4 self.reduce_layer_1 = build_reduce_layer(cfg, c5, round(512*width)) self.top_down_layer_1 = build_fpn_block(cfg, c4 + round(512*width), round(512*width)) ### P4 -> P3 self.reduce_layer_2 = build_reduce_layer(cfg, round(512*width), round(256*width)) self.top_down_layer_2 = build_fpn_block(cfg, c3 + round(256*width), round(256*width)) ## bottom up ### P3 -> P4 self.downsample_layer_1 = build_downsample_layer(cfg, round(256*width), round(256*width)) self.bottom_up_layer_1 = build_fpn_block(cfg, round(256*width) + round(256*width), round(512*width)) ### P4 -> P5 self.downsample_layer_2 = build_downsample_layer(cfg, round(512*width), round(512*width)) self.bottom_up_layer_2 = build_fpn_block(cfg, round(512*width) + round(512*width), round(1024*width)) ## output proj layers if out_dim is not None: self.out_layers = nn.ModuleList([ Conv(in_dim, out_dim, k=1, act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm']) for in_dim in [round(256*width), round(512*width), round(1024*width)] ]) self.out_dim = [out_dim] * 3 else: self.out_layers = None self.out_dim = [round(256*width), round(512*width), round(1024*width)] def forward(self, features): c3, c4, c5 = features # Top down ## P5 -> P4 c6 = self.reduce_layer_1(c5) c7 = F.interpolate(c6, scale_factor=2.0) c8 = torch.cat([c7, c4], dim=1) c9 = self.top_down_layer_1(c8) ## P4 -> P3 c10 = self.reduce_layer_2(c9) c11 = F.interpolate(c10, scale_factor=2.0) c12 = torch.cat([c11, c3], dim=1) c13 = self.top_down_layer_2(c12) # Bottom up ## p3 -> P4 c14 = self.downsample_layer_1(c13) c15 = torch.cat([c14, c10], dim=1) c16 = self.bottom_up_layer_1(c15) ## P4 -> P5 c17 = self.downsample_layer_2(c16) c18 = torch.cat([c17, c6], dim=1) c19 = self.bottom_up_layer_2(c18) out_feats = [c13, c16, c19] # [P3, P4, P5] # output proj layers if self.out_layers is not None: out_feats_proj = [] for feat, layer in zip(out_feats, self.out_layers): out_feats_proj.append(layer(feat)) return out_feats_proj return out_feats def build_fpn(cfg, in_dims, out_dim=None): model = cfg['fpn'] # build pafpn if model == 'yolov5_pafpn': fpn_net = Yolov5PaFPN(cfg, in_dims, out_dim) return fpn_net