yjh0410 5183498321 release YOLOv8-s il y a 1 an
..
README.md 5183498321 release YOLOv8-s il y a 1 an
build.py f73a52f516 modify post-process il y a 1 an
loss.py 15a6ec2aca remove useless codes il y a 1 an
matcher.py 2727b6adb1 debug trainer il y a 2 ans
yolox.py 6495457ee4 add RTCDet il y a 1 an
yolox_backbone.py 6495457ee4 add RTCDet il y a 1 an
yolox_basic.py 3246f3efdd update il y a 2 ans
yolox_head.py 1c33255e13 update RTCDet il y a 1 an
yolox_neck.py c099f5dbdb design YOLOX2 il y a 2 ans
yolox_pafpn.py 1c33255e13 update RTCDet il y a 1 an

README.md

YOLOX:

  • For training, we train YOLOX series with 300 epochs on COCO.
  • For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation.
  • For optimizer, we use SGD with weight decay 0.0005 and base per image lr 0.01 / 64,.
  • For learning rate scheduler, we use Cosine decay scheduler.

Train YOLOX

Single GPU

Taking training YOLOX-S on COCO as the example,

python train.py --cuda -d coco --root path/to/coco -m yolox_s -bs 16 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --multi_scale 

Multi GPU

Taking training YOLOX-S on COCO as the example,

python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m yolox_s -bs 128 -size 640 --wp_epoch 3 --max_epoch 300  --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/ 

Test YOLOX

Taking testing YOLOX-S on COCO-val as the example,

python test.py --cuda -d coco --root path/to/coco -m yolox_s --weight path/to/yolox_s.pth -size 640 -vt 0.4 --show 

Evaluate YOLOX

Taking evaluating YOLOX-S on COCO-val as the example,

python eval.py --cuda -d coco-val --root path/to/coco -m yolox_s --weight path/to/yolox_s.pth 

Demo

Detect with Image

python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolox_s --weight path/to/weight -size 640 -vt 0.4 --show

Detect with Video

python demo.py --mode video --path_to_vid path/to/video --cuda -m yolox_s --weight path/to/weight -size 640 -vt 0.4 --show --gif

Detect with Camera

python demo.py --mode camera --cuda -m yolox_s --weight path/to/weight -size 640 -vt 0.4 --show --gif
Model Batch Scale APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight
YOLOX-S 8xb8 640 40.1 60.3 26.8 8.9 ckpt
YOLOX-M 8xb8 640 46.2 66.0 74.3 25.4 ckpt
YOLOX-L 8xb8 640 48.7 68.0 155.4 54.2 ckpt
YOLOX-X 8xb8 640