|
|
@@ -0,0 +1,222 @@
|
|
|
+import numpy as np
|
|
|
+import torch
|
|
|
+import torch.nn as nn
|
|
|
+
|
|
|
+
|
|
|
+# ---------------------------- 2D CNN ----------------------------
|
|
|
+class SiLU(nn.Module):
|
|
|
+ """export-friendly version of nn.SiLU()"""
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def forward(x):
|
|
|
+ return x * torch.sigmoid(x)
|
|
|
+
|
|
|
+
|
|
|
+def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
|
|
|
+ conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
|
|
|
+
|
|
|
+ return conv
|
|
|
+
|
|
|
+
|
|
|
+def get_activation(act_type=None):
|
|
|
+ if act_type == 'relu':
|
|
|
+ return nn.ReLU(inplace=True)
|
|
|
+ elif act_type == 'lrelu':
|
|
|
+ return nn.LeakyReLU(0.1, inplace=True)
|
|
|
+ elif act_type == 'mish':
|
|
|
+ return nn.Mish(inplace=True)
|
|
|
+ elif act_type == 'silu':
|
|
|
+ return nn.SiLU(inplace=True)
|
|
|
+ elif act_type is None:
|
|
|
+ return nn.Identity()
|
|
|
+
|
|
|
+
|
|
|
+def get_norm(norm_type, dim):
|
|
|
+ if norm_type == 'BN':
|
|
|
+ return nn.BatchNorm2d(dim)
|
|
|
+ elif norm_type == 'GN':
|
|
|
+ return nn.GroupNorm(num_groups=32, num_channels=dim)
|
|
|
+
|
|
|
+
|
|
|
+# Basic conv layer
|
|
|
+class Conv(nn.Module):
|
|
|
+ def __init__(self,
|
|
|
+ c1, # in channels
|
|
|
+ c2, # out channels
|
|
|
+ k=1, # kernel size
|
|
|
+ p=0, # padding
|
|
|
+ s=1, # padding
|
|
|
+ d=1, # dilation
|
|
|
+ act_type='lrelu', # activation
|
|
|
+ norm_type='BN', # normalization
|
|
|
+ depthwise=False):
|
|
|
+ super(Conv, self).__init__()
|
|
|
+ convs = []
|
|
|
+ add_bias = False if norm_type else True
|
|
|
+ p = p if d == 1 else d
|
|
|
+ if depthwise:
|
|
|
+ convs.append(get_conv2d(c1, c1, k=k, p=p, s=s, d=d, g=c1, bias=add_bias))
|
|
|
+ # depthwise conv
|
|
|
+ if norm_type:
|
|
|
+ convs.append(get_norm(norm_type, c1))
|
|
|
+ if act_type:
|
|
|
+ convs.append(get_activation(act_type))
|
|
|
+ # pointwise conv
|
|
|
+ convs.append(get_conv2d(c1, c2, k=1, p=0, s=1, d=d, g=1, bias=add_bias))
|
|
|
+ if norm_type:
|
|
|
+ convs.append(get_norm(norm_type, c2))
|
|
|
+ if act_type:
|
|
|
+ convs.append(get_activation(act_type))
|
|
|
+
|
|
|
+ else:
|
|
|
+ convs.append(get_conv2d(c1, c2, k=k, p=p, s=s, d=d, g=1, bias=add_bias))
|
|
|
+ if norm_type:
|
|
|
+ convs.append(get_norm(norm_type, c2))
|
|
|
+ if act_type:
|
|
|
+ convs.append(get_activation(act_type))
|
|
|
+
|
|
|
+ self.convs = nn.Sequential(*convs)
|
|
|
+
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ return self.convs(x)
|
|
|
+
|
|
|
+
|
|
|
+# ---------------------------- Modified YOLOv7's Modules ----------------------------
|
|
|
+## ELANBlock for Backbone
|
|
|
+class ELANBlock(nn.Module):
|
|
|
+ def __init__(self, in_dim, out_dim, expand_ratio=0.5, depth=1.0, act_type='silu', norm_type='BN', depthwise=False):
|
|
|
+ super(ELANBlock, self).__init__()
|
|
|
+ if isinstance(expand_ratio, float):
|
|
|
+ inter_dim = int(in_dim * expand_ratio)
|
|
|
+ inter_dim2 = inter_dim
|
|
|
+ elif isinstance(expand_ratio, list):
|
|
|
+ assert len(expand_ratio) == 2
|
|
|
+ e1, e2 = expand_ratio
|
|
|
+ inter_dim = int(in_dim * e1)
|
|
|
+ inter_dim2 = int(inter_dim * e2)
|
|
|
+ # branch-1
|
|
|
+ self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
+ # branch-2
|
|
|
+ self.cv2 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
+ # branch-3
|
|
|
+ for idx in range(round(3*depth)):
|
|
|
+ if idx == 0:
|
|
|
+ cv3 = [Conv(inter_dim, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)]
|
|
|
+ else:
|
|
|
+ cv3.append(Conv(inter_dim2, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise))
|
|
|
+ self.cv3 = nn.Sequential(*cv3)
|
|
|
+ # branch-4
|
|
|
+ self.cv4 = nn.Sequential(*[
|
|
|
+ Conv(inter_dim2, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
+ for _ in range(round(3*depth))
|
|
|
+ ])
|
|
|
+ # output
|
|
|
+ self.out = Conv(inter_dim*2 + inter_dim2*2, out_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
+
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ """
|
|
|
+ Input:
|
|
|
+ x: [B, C_in, H, W]
|
|
|
+ Output:
|
|
|
+ out: [B, C_out, H, W]
|
|
|
+ """
|
|
|
+ x1 = self.cv1(x)
|
|
|
+ x2 = self.cv2(x)
|
|
|
+ x3 = self.cv3(x2)
|
|
|
+ x4 = self.cv4(x3)
|
|
|
+
|
|
|
+ # [B, C, H, W] -> [B, 2C, H, W]
|
|
|
+ out = self.out(torch.cat([x1, x2, x3, x4], dim=1))
|
|
|
+
|
|
|
+ return out
|
|
|
+
|
|
|
+## PaFPN's ELAN-Block proposed by YOLOv7
|
|
|
+class ELANBlockFPN(nn.Module):
|
|
|
+ def __init__(self, in_dim, out_dim, expand_ratio=0.5, width=1.0, depth=1.0, act_type='silu', norm_type='BN', depthwise=False):
|
|
|
+ super(ELANBlockFPN, self).__init__()
|
|
|
+ inter_dim = int(in_dim * expand_ratio)
|
|
|
+ inter_dim2 = int(inter_dim * expand_ratio)
|
|
|
+ # branch-1
|
|
|
+ self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
+ # branch-2
|
|
|
+ self.cv2 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
+ # more branches
|
|
|
+ self.cv3 = nn.ModuleList()
|
|
|
+ for idx in range(round(4*width)):
|
|
|
+ if idx == 0:
|
|
|
+ cvs = [Conv(inter_dim, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)]
|
|
|
+ else:
|
|
|
+ cvs = [Conv(inter_dim2, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)]
|
|
|
+ # deeper
|
|
|
+ for _ in range(1, round(depth)):
|
|
|
+ cvs.append(Conv(inter_dim2, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise))
|
|
|
+ self.cv3.append(nn.Sequential(*cvs))
|
|
|
+
|
|
|
+ self.out = Conv(inter_dim*2+inter_dim2*len(self.cv3), out_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
+
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ x1 = self.cv1(x)
|
|
|
+ x2 = self.cv2(x)
|
|
|
+ inter_outs = [x1, x2]
|
|
|
+ for m in self.cv3:
|
|
|
+ y1 = inter_outs[-1]
|
|
|
+ y2 = m(y1)
|
|
|
+ inter_outs.append(y2)
|
|
|
+ out = self.out(torch.cat(inter_outs, dim=1))
|
|
|
+
|
|
|
+ return out
|
|
|
+
|
|
|
+## DownSample
|
|
|
+class DownSample(nn.Module):
|
|
|
+ def __init__(self, in_dim, out_dim, act_type='silu', norm_type='BN', depthwise=False):
|
|
|
+ super().__init__()
|
|
|
+ inter_dim = out_dim // 2
|
|
|
+ self.mp = nn.MaxPool2d((2, 2), 2)
|
|
|
+ self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
+ self.cv2 = nn.Sequential(
|
|
|
+ Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type),
|
|
|
+ Conv(inter_dim, inter_dim, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
+ )
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ x1 = self.cv1(self.mp(x))
|
|
|
+ x2 = self.cv2(x)
|
|
|
+ out = torch.cat([x1, x2], dim=1)
|
|
|
+
|
|
|
+ return out
|
|
|
+
|
|
|
+
|
|
|
+# ---------------------------- FPN Modules ----------------------------
|
|
|
+## build fpn's core block
|
|
|
+def build_fpn_block(cfg, in_dim, out_dim):
|
|
|
+ if cfg['fpn_core_block'] == 'elanblock':
|
|
|
+ layer = ELANBlockFPN(in_dim=in_dim,
|
|
|
+ out_dim=out_dim,
|
|
|
+ expand_ratio=0.5,
|
|
|
+ width=cfg['width'],
|
|
|
+ depth=cfg['depth'],
|
|
|
+ act_type=cfg['fpn_act'],
|
|
|
+ norm_type=cfg['fpn_norm'],
|
|
|
+ depthwise=cfg['fpn_depthwise']
|
|
|
+ )
|
|
|
+
|
|
|
+ return layer
|
|
|
+
|
|
|
+## build fpn's reduce layer
|
|
|
+def build_reduce_layer(cfg, in_dim, out_dim):
|
|
|
+ if cfg['fpn_reduce_layer'] == 'conv':
|
|
|
+ layer = Conv(in_dim, out_dim, k=1, act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'])
|
|
|
+
|
|
|
+ return layer
|
|
|
+
|
|
|
+## build fpn's downsample layer
|
|
|
+def build_downsample_layer(cfg, in_dim, out_dim):
|
|
|
+ if cfg['fpn_downsample_layer'] == 'conv':
|
|
|
+ layer = Conv(in_dim, out_dim, k=3, s=2, p=1, act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'])
|
|
|
+ elif cfg['fpn_downsample_layer'] == 'dsblock':
|
|
|
+ layer = DownSample(in_dim, out_dim, act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'])
|
|
|
+
|
|
|
+ return layer
|