| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- import torch
- import torch.nn as nn
- from typing import List
- # ----------------- CNN modules -----------------
- def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
- return conv
- def get_activation(act_type=None):
- if act_type == 'relu':
- return nn.ReLU(inplace=True)
- elif act_type == 'lrelu':
- return nn.LeakyReLU(0.1, inplace=True)
- elif act_type == 'mish':
- return nn.Mish(inplace=True)
- elif act_type == 'silu':
- return nn.SiLU(inplace=True)
- elif act_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
-
- def get_norm(norm_type, dim):
- if norm_type == 'BN':
- return nn.BatchNorm2d(dim)
- elif norm_type == 'GN':
- return nn.GroupNorm(num_groups=32, num_channels=dim)
- elif norm_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
- class Conv(nn.Module):
- def __init__(self,
- c1, # in channels
- c2, # out channels
- k=1, # kernel size
- p=0, # padding
- s=1, # padding
- d=1, # dilation
- act_type :str = 'lrelu', # activation
- norm_type :str ='BN', # normalization
- depthwise :bool =False):
- super(Conv, self).__init__()
- convs = []
- add_bias = False if norm_type else True
- if depthwise:
- convs.append(get_conv2d(c1, c1, k=k, p=p, s=s, d=d, g=c1, bias=add_bias))
- # depthwise conv
- if norm_type:
- convs.append(get_norm(norm_type, c1))
- if act_type:
- convs.append(get_activation(act_type))
- # pointwise conv
- convs.append(get_conv2d(c1, c2, k=1, p=0, s=1, d=d, g=1, bias=add_bias))
- if norm_type:
- convs.append(get_norm(norm_type, c2))
- if act_type:
- convs.append(get_activation(act_type))
- else:
- convs.append(get_conv2d(c1, c2, k=k, p=p, s=s, d=d, g=1, bias=add_bias))
- if norm_type:
- convs.append(get_norm(norm_type, c2))
- if act_type:
- convs.append(get_activation(act_type))
-
- self.convs = nn.Sequential(*convs)
- def forward(self, x):
- return self.convs(x)
- class Bottleneck(nn.Module):
- def __init__(self,
- in_dim :int,
- out_dim :int,
- expand_ratio :float = 0.5,
- kernel_sizes :List = [3, 3],
- shortcut :bool = True,
- act_type :str = 'silu',
- norm_type :str = 'BN',
- depthwise :bool = False,):
- super(Bottleneck, self).__init__()
- inter_dim = int(out_dim * expand_ratio) # hidden channels
- self.cv1 = Conv(in_dim, inter_dim, k=kernel_sizes[0], p=kernel_sizes[0]//2, norm_type=norm_type, act_type=act_type, depthwise=depthwise)
- self.cv2 = Conv(inter_dim, out_dim, k=kernel_sizes[1], p=kernel_sizes[1]//2, norm_type=norm_type, act_type=act_type, depthwise=depthwise)
- self.shortcut = shortcut and in_dim == out_dim
- def forward(self, x):
- h = self.cv2(self.cv1(x))
- return x + h if self.shortcut else h
- class RTCBlock(nn.Module):
- def __init__(self,
- in_dim :int,
- out_dim :int,
- num_blocks :int = 1,
- shortcut :bool = False,
- act_type :str = 'silu',
- norm_type :str = 'BN',
- depthwise :bool = False,):
- super(RTCBlock, self).__init__()
- self.inter_dim = out_dim // 2
- self.input_proj = Conv(in_dim, out_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.m = nn.Sequential(*(
- Bottleneck(self.inter_dim, self.inter_dim, 1.0, [3, 3], shortcut, act_type, norm_type, depthwise)
- for _ in range(num_blocks)))
- self.output_proj = Conv((2 + num_blocks) * self.inter_dim, out_dim, k=1, act_type=act_type, norm_type=norm_type)
- def forward(self, x):
- # Input proj
- x1, x2 = torch.chunk(self.input_proj(x), 2, dim=1)
- out = list([x1, x2])
- # Bottlenecl
- out.extend(m(out[-1]) for m in self.m)
- # Output proj
- out = self.output_proj(torch.cat(out, dim=1))
- return out
- # ----------------- Transformer modules -----------------
|