import torch import torch.nn as nn from typing import List # ----------------- CNN modules ----------------- def get_conv2d(c1, c2, k, p, s, d, g, bias=False): conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias) return conv def get_activation(act_type=None): if act_type == 'relu': return nn.ReLU(inplace=True) elif act_type == 'lrelu': return nn.LeakyReLU(0.1, inplace=True) elif act_type == 'mish': return nn.Mish(inplace=True) elif act_type == 'silu': return nn.SiLU(inplace=True) elif act_type is None: return nn.Identity() else: raise NotImplementedError def get_norm(norm_type, dim): if norm_type == 'BN': return nn.BatchNorm2d(dim) elif norm_type == 'GN': return nn.GroupNorm(num_groups=32, num_channels=dim) elif norm_type is None: return nn.Identity() else: raise NotImplementedError class Conv(nn.Module): def __init__(self, c1, # in channels c2, # out channels k=1, # kernel size p=0, # padding s=1, # padding d=1, # dilation act_type :str = 'lrelu', # activation norm_type :str ='BN', # normalization depthwise :bool =False): super(Conv, self).__init__() convs = [] add_bias = False if norm_type else True if depthwise: convs.append(get_conv2d(c1, c1, k=k, p=p, s=s, d=d, g=c1, bias=add_bias)) # depthwise conv if norm_type: convs.append(get_norm(norm_type, c1)) if act_type: convs.append(get_activation(act_type)) # pointwise conv convs.append(get_conv2d(c1, c2, k=1, p=0, s=1, d=d, g=1, bias=add_bias)) if norm_type: convs.append(get_norm(norm_type, c2)) if act_type: convs.append(get_activation(act_type)) else: convs.append(get_conv2d(c1, c2, k=k, p=p, s=s, d=d, g=1, bias=add_bias)) if norm_type: convs.append(get_norm(norm_type, c2)) if act_type: convs.append(get_activation(act_type)) self.convs = nn.Sequential(*convs) def forward(self, x): return self.convs(x) class Bottleneck(nn.Module): def __init__(self, in_dim :int, out_dim :int, expand_ratio :float = 0.5, kernel_sizes :List = [3, 3], shortcut :bool = True, act_type :str = 'silu', norm_type :str = 'BN', depthwise :bool = False,): super(Bottleneck, self).__init__() inter_dim = int(out_dim * expand_ratio) # hidden channels self.cv1 = Conv(in_dim, inter_dim, k=kernel_sizes[0], p=kernel_sizes[0]//2, norm_type=norm_type, act_type=act_type, depthwise=depthwise) self.cv2 = Conv(inter_dim, out_dim, k=kernel_sizes[1], p=kernel_sizes[1]//2, norm_type=norm_type, act_type=act_type, depthwise=depthwise) self.shortcut = shortcut and in_dim == out_dim def forward(self, x): h = self.cv2(self.cv1(x)) return x + h if self.shortcut else h class RTCBlock(nn.Module): def __init__(self, in_dim :int, out_dim :int, num_blocks :int = 1, shortcut :bool = False, act_type :str = 'silu', norm_type :str = 'BN', depthwise :bool = False,): super(RTCBlock, self).__init__() self.inter_dim = out_dim // 2 self.input_proj = Conv(in_dim, out_dim, k=1, act_type=act_type, norm_type=norm_type) self.m = nn.Sequential(*( Bottleneck(self.inter_dim, self.inter_dim, 1.0, [3, 3], shortcut, act_type, norm_type, depthwise) for _ in range(num_blocks))) self.output_proj = Conv((2 + num_blocks) * self.inter_dim, out_dim, k=1, act_type=act_type, norm_type=norm_type) def forward(self, x): # Input proj x1, x2 = torch.chunk(self.input_proj(x), 2, dim=1) out = list([x1, x2]) # Bottlenecl out.extend(m(out[-1]) for m in self.m) # Output proj out = self.output_proj(torch.cat(out, dim=1)) return out # ----------------- Transformer modules -----------------