| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from typing import List
- try:
- from .basic import BasicConv, RepRTCBlock
- from .transformer import TransformerEncoder
- except:
- from basic import BasicConv, RepRTCBlock
- from transformer import TransformerEncoder
- # Build PaFPN
- def build_fpn(cfg, in_dims, out_dim):
- if cfg['fpn'] == 'hybrid_encoder':
- return HybridEncoder(in_dims = in_dims,
- out_dim = out_dim,
- num_blocks = cfg['fpn_num_blocks'],
- expansion = cfg['fpn_expansion'],
- act_type = cfg['fpn_act'],
- norm_type = cfg['fpn_norm'],
- num_heads = cfg['en_num_heads'],
- num_layers = cfg['en_num_layers'],
- ffn_dim = cfg['en_ffn_dim'],
- dropout = cfg['en_dropout'],
- pe_temperature = cfg['pe_temperature'],
- en_act_type = cfg['en_act'],
- )
- else:
- raise NotImplementedError("Unknown PaFPN: <{}>".format(cfg['fpn']))
- # ----------------- Feature Pyramid Network -----------------
- ## Hybrid Encoder (Transformer encoder + Convolutional PaFPN)
- class HybridEncoder(nn.Module):
- def __init__(self,
- in_dims :List = [256, 512, 1024],
- out_dim :int = 256,
- num_blocks :int = 3,
- expansion :float = 1.0,
- act_type :str = 'silu',
- norm_type :str = 'BN',
- # Transformer's parameters
- num_heads :int = 8,
- num_layers :int = 1,
- ffn_dim :int = 1024,
- dropout :float = 0.1,
- pe_temperature :float = 10000.,
- en_act_type :str = 'gelu'
- ) -> None:
- super(HybridEncoder, self).__init__()
- print('==============================')
- print('FPN: {}'.format("RTC-PaFPN"))
- # ---------------- Basic parameters ----------------
- self.in_dims = in_dims
- self.out_dim = out_dim
- self.out_dims = [self.out_dim] * len(in_dims)
- self.num_heads = num_heads
- self.num_layers = num_layers
- self.ffn_dim = ffn_dim
- c3, c4, c5 = in_dims
- # ---------------- Input projs ----------------
- self.input_proj_1 = BasicConv(c5, self.out_dim, kernel_size=1, act_type=None, norm_type=norm_type)
- self.input_proj_2 = BasicConv(c4, self.out_dim, kernel_size=1, act_type=None, norm_type=norm_type)
- self.input_proj_3 = BasicConv(c3, self.out_dim, kernel_size=1, act_type=None, norm_type=norm_type)
- # ---------------- Transformer Encoder ----------------
- self.transformer_encoder = TransformerEncoder(d_model = self.out_dim,
- num_heads = num_heads,
- num_layers = num_layers,
- ffn_dim = ffn_dim,
- pe_temperature = pe_temperature,
- dropout = dropout,
- act_type = en_act_type
- )
- # ---------------- Top dwon FPN ----------------
- ## P5 -> P4
- self.reduce_layer_1 = BasicConv(self.out_dim, self.out_dim,
- kernel_size=1, padding=0, stride=1,
- act_type=act_type, norm_type=norm_type)
- self.top_down_layer_1 = RepRTCBlock(in_dim = self.out_dim * 2,
- out_dim = self.out_dim,
- num_blocks = num_blocks,
- expansion = expansion,
- act_type = act_type,
- norm_type = norm_type,
- )
- ## P4 -> P3
- self.reduce_layer_2 = BasicConv(self.out_dim, self.out_dim,
- kernel_size=1, padding=0, stride=1,
- act_type=act_type, norm_type=norm_type)
- self.top_down_layer_2 = RepRTCBlock(in_dim = self.out_dim * 2,
- out_dim = self.out_dim,
- num_blocks = num_blocks,
- expansion = expansion,
- act_type = act_type,
- norm_type = norm_type,
- )
-
- # ---------------- Bottom up PAN----------------
- ## P3 -> P4
- self.dowmsample_layer_1 = BasicConv(self.out_dim, self.out_dim,
- kernel_size=3, padding=1, stride=2,
- act_type=act_type, norm_type=norm_type)
- self.bottom_up_layer_1 = RepRTCBlock(in_dim = self.out_dim * 2,
- out_dim = self.out_dim,
- num_blocks = num_blocks,
- expansion = expansion,
- act_type = act_type,
- norm_type = norm_type,
- )
- ## P4 -> P5
- self.dowmsample_layer_2 = BasicConv(self.out_dim, self.out_dim,
- kernel_size=3, padding=1, stride=2,
- act_type=act_type, norm_type=norm_type)
- self.bottom_up_layer_2 = RepRTCBlock(in_dim = self.out_dim * 2,
- out_dim = self.out_dim,
- num_blocks = num_blocks,
- expansion = expansion,
- act_type = act_type,
- norm_type = norm_type,
- )
- self.init_weights()
-
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- # In order to be consistent with the source code,
- # reset the Conv2d initialization parameters
- m.reset_parameters()
- def forward(self, features):
- c3, c4, c5 = features
- # -------- Input projs --------
- p5 = self.input_proj_1(c5)
- p4 = self.input_proj_2(c4)
- p3 = self.input_proj_3(c3)
- # -------- Transformer encoder --------
- p5 = self.transformer_encoder(p5)
- # -------- Top down FPN --------
- ## P5 -> P4
- p5_in = self.reduce_layer_1(p5)
- p5_up = F.interpolate(p5_in, scale_factor=2.0)
- p4 = self.top_down_layer_1(torch.cat([p4, p5_up], dim=1))
- ## P4 -> P3
- p4_in = self.reduce_layer_2(p4)
- p4_up = F.interpolate(p4_in, scale_factor=2.0)
- p3 = self.top_down_layer_2(torch.cat([p3, p4_up], dim=1))
- # -------- Bottom up PAN --------
- ## P3 -> P4
- p3_ds = self.dowmsample_layer_1(p3)
- p4 = self.bottom_up_layer_1(torch.cat([p4_in, p3_ds], dim=1))
- p4_ds = self.dowmsample_layer_2(p4)
- p5 = self.bottom_up_layer_2(torch.cat([p5_in, p4_ds], dim=1))
- out_feats = [p3, p4, p5]
-
- return out_feats
- if __name__ == '__main__':
- import time
- from thop import profile
- cfg = {
- 'fpn': 'hybrid_encoder',
- 'fpn_act': 'silu',
- 'fpn_norm': 'BN',
- 'fpn_depthwise': False,
- 'fpn_num_blocks': 3,
- 'fpn_expansion': 1.0,
- 'en_num_heads': 8,
- 'en_num_layers': 1,
- 'en_ffn_dim': 1024,
- 'en_dropout': 0.0,
- 'pe_temperature': 10000.,
- 'en_act': 'gelu',
- }
- fpn_dims = [256, 512, 1024]
- out_dim = 256
- pyramid_feats = [torch.randn(1, fpn_dims[0], 80, 80), torch.randn(1, fpn_dims[1], 40, 40), torch.randn(1, fpn_dims[2], 20, 20)]
- model = build_fpn(cfg, fpn_dims, out_dim)
- t0 = time.time()
- outputs = model(pyramid_feats)
- t1 = time.time()
- print('Time: ', t1 - t0)
- for out in outputs:
- print(out.shape)
- print('==============================')
- flops, params = profile(model, inputs=(pyramid_feats, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|