fpn.py 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from typing import List
  5. try:
  6. from .basic import BasicConv, RepRTCBlock
  7. from .transformer import TransformerEncoder
  8. except:
  9. from basic import BasicConv, RepRTCBlock
  10. from transformer import TransformerEncoder
  11. # Build PaFPN
  12. def build_fpn(cfg, in_dims, out_dim):
  13. if cfg['fpn'] == 'hybrid_encoder':
  14. return HybridEncoder(in_dims = in_dims,
  15. out_dim = out_dim,
  16. num_blocks = cfg['fpn_num_blocks'],
  17. expansion = cfg['fpn_expansion'],
  18. act_type = cfg['fpn_act'],
  19. norm_type = cfg['fpn_norm'],
  20. num_heads = cfg['en_num_heads'],
  21. num_layers = cfg['en_num_layers'],
  22. ffn_dim = cfg['en_ffn_dim'],
  23. dropout = cfg['en_dropout'],
  24. pe_temperature = cfg['pe_temperature'],
  25. en_act_type = cfg['en_act'],
  26. )
  27. else:
  28. raise NotImplementedError("Unknown PaFPN: <{}>".format(cfg['fpn']))
  29. # ----------------- Feature Pyramid Network -----------------
  30. ## Hybrid Encoder (Transformer encoder + Convolutional PaFPN)
  31. class HybridEncoder(nn.Module):
  32. def __init__(self,
  33. in_dims :List = [256, 512, 1024],
  34. out_dim :int = 256,
  35. num_blocks :int = 3,
  36. expansion :float = 1.0,
  37. act_type :str = 'silu',
  38. norm_type :str = 'BN',
  39. # Transformer's parameters
  40. num_heads :int = 8,
  41. num_layers :int = 1,
  42. ffn_dim :int = 1024,
  43. dropout :float = 0.1,
  44. pe_temperature :float = 10000.,
  45. en_act_type :str = 'gelu'
  46. ) -> None:
  47. super(HybridEncoder, self).__init__()
  48. print('==============================')
  49. print('FPN: {}'.format("RTC-PaFPN"))
  50. # ---------------- Basic parameters ----------------
  51. self.in_dims = in_dims
  52. self.out_dim = out_dim
  53. self.out_dims = [self.out_dim] * len(in_dims)
  54. self.num_heads = num_heads
  55. self.num_layers = num_layers
  56. self.ffn_dim = ffn_dim
  57. c3, c4, c5 = in_dims
  58. # ---------------- Input projs ----------------
  59. self.input_proj_1 = BasicConv(c5, self.out_dim, kernel_size=1, act_type=None, norm_type=norm_type)
  60. self.input_proj_2 = BasicConv(c4, self.out_dim, kernel_size=1, act_type=None, norm_type=norm_type)
  61. self.input_proj_3 = BasicConv(c3, self.out_dim, kernel_size=1, act_type=None, norm_type=norm_type)
  62. # ---------------- Transformer Encoder ----------------
  63. self.transformer_encoder = TransformerEncoder(d_model = self.out_dim,
  64. num_heads = num_heads,
  65. num_layers = num_layers,
  66. ffn_dim = ffn_dim,
  67. pe_temperature = pe_temperature,
  68. dropout = dropout,
  69. act_type = en_act_type
  70. )
  71. # ---------------- Top dwon FPN ----------------
  72. ## P5 -> P4
  73. self.reduce_layer_1 = BasicConv(self.out_dim, self.out_dim,
  74. kernel_size=1, padding=0, stride=1,
  75. act_type=act_type, norm_type=norm_type)
  76. self.top_down_layer_1 = RepRTCBlock(in_dim = self.out_dim * 2,
  77. out_dim = self.out_dim,
  78. num_blocks = num_blocks,
  79. expansion = expansion,
  80. act_type = act_type,
  81. norm_type = norm_type,
  82. )
  83. ## P4 -> P3
  84. self.reduce_layer_2 = BasicConv(self.out_dim, self.out_dim,
  85. kernel_size=1, padding=0, stride=1,
  86. act_type=act_type, norm_type=norm_type)
  87. self.top_down_layer_2 = RepRTCBlock(in_dim = self.out_dim * 2,
  88. out_dim = self.out_dim,
  89. num_blocks = num_blocks,
  90. expansion = expansion,
  91. act_type = act_type,
  92. norm_type = norm_type,
  93. )
  94. # ---------------- Bottom up PAN----------------
  95. ## P3 -> P4
  96. self.dowmsample_layer_1 = BasicConv(self.out_dim, self.out_dim,
  97. kernel_size=3, padding=1, stride=2,
  98. act_type=act_type, norm_type=norm_type)
  99. self.bottom_up_layer_1 = RepRTCBlock(in_dim = self.out_dim * 2,
  100. out_dim = self.out_dim,
  101. num_blocks = num_blocks,
  102. expansion = expansion,
  103. act_type = act_type,
  104. norm_type = norm_type,
  105. )
  106. ## P4 -> P5
  107. self.dowmsample_layer_2 = BasicConv(self.out_dim, self.out_dim,
  108. kernel_size=3, padding=1, stride=2,
  109. act_type=act_type, norm_type=norm_type)
  110. self.bottom_up_layer_2 = RepRTCBlock(in_dim = self.out_dim * 2,
  111. out_dim = self.out_dim,
  112. num_blocks = num_blocks,
  113. expansion = expansion,
  114. act_type = act_type,
  115. norm_type = norm_type,
  116. )
  117. self.init_weights()
  118. def init_weights(self):
  119. """Initialize the parameters."""
  120. for m in self.modules():
  121. if isinstance(m, torch.nn.Conv2d):
  122. # In order to be consistent with the source code,
  123. # reset the Conv2d initialization parameters
  124. m.reset_parameters()
  125. def forward(self, features):
  126. c3, c4, c5 = features
  127. # -------- Input projs --------
  128. p5 = self.input_proj_1(c5)
  129. p4 = self.input_proj_2(c4)
  130. p3 = self.input_proj_3(c3)
  131. # -------- Transformer encoder --------
  132. p5 = self.transformer_encoder(p5)
  133. # -------- Top down FPN --------
  134. ## P5 -> P4
  135. p5_in = self.reduce_layer_1(p5)
  136. p5_up = F.interpolate(p5_in, scale_factor=2.0)
  137. p4 = self.top_down_layer_1(torch.cat([p4, p5_up], dim=1))
  138. ## P4 -> P3
  139. p4_in = self.reduce_layer_2(p4)
  140. p4_up = F.interpolate(p4_in, scale_factor=2.0)
  141. p3 = self.top_down_layer_2(torch.cat([p3, p4_up], dim=1))
  142. # -------- Bottom up PAN --------
  143. ## P3 -> P4
  144. p3_ds = self.dowmsample_layer_1(p3)
  145. p4 = self.bottom_up_layer_1(torch.cat([p4_in, p3_ds], dim=1))
  146. p4_ds = self.dowmsample_layer_2(p4)
  147. p5 = self.bottom_up_layer_2(torch.cat([p5_in, p4_ds], dim=1))
  148. out_feats = [p3, p4, p5]
  149. return out_feats
  150. if __name__ == '__main__':
  151. import time
  152. from thop import profile
  153. cfg = {
  154. 'fpn': 'hybrid_encoder',
  155. 'fpn_act': 'silu',
  156. 'fpn_norm': 'BN',
  157. 'fpn_depthwise': False,
  158. 'fpn_num_blocks': 3,
  159. 'fpn_expansion': 1.0,
  160. 'en_num_heads': 8,
  161. 'en_num_layers': 1,
  162. 'en_ffn_dim': 1024,
  163. 'en_dropout': 0.0,
  164. 'pe_temperature': 10000.,
  165. 'en_act': 'gelu',
  166. }
  167. fpn_dims = [256, 512, 1024]
  168. out_dim = 256
  169. pyramid_feats = [torch.randn(1, fpn_dims[0], 80, 80), torch.randn(1, fpn_dims[1], 40, 40), torch.randn(1, fpn_dims[2], 20, 20)]
  170. model = build_fpn(cfg, fpn_dims, out_dim)
  171. t0 = time.time()
  172. outputs = model(pyramid_feats)
  173. t1 = time.time()
  174. print('Time: ', t1 - t0)
  175. for out in outputs:
  176. print(out.shape)
  177. print('==============================')
  178. flops, params = profile(model, inputs=(pyramid_feats, ), verbose=False)
  179. print('==============================')
  180. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  181. print('Params : {:.2f} M'.format(params / 1e6))