|
@@ -36,7 +36,7 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(
|
|
target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(
|
|
|
mask_pos, overlaps, self.n_max_boxes)
|
|
mask_pos, overlaps, self.n_max_boxes)
|
|
|
|
|
|
|
|
- # assigned target
|
|
|
|
|
|
|
+ # Assigned target
|
|
|
target_labels, target_bboxes, target_scores = self.get_targets(
|
|
target_labels, target_bboxes, target_scores = self.get_targets(
|
|
|
gt_labels, gt_bboxes, target_gt_idx, fg_mask)
|
|
gt_labels, gt_bboxes, target_gt_idx, fg_mask)
|
|
|
|
|
|
|
@@ -50,28 +50,36 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx
|
|
return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx
|
|
|
|
|
|
|
|
def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points):
|
|
def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points):
|
|
|
- # get anchor_align metric, (b, max_num_obj, h*w)
|
|
|
|
|
- align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes)
|
|
|
|
|
# get in_gts mask, (b, max_num_obj, h*w)
|
|
# get in_gts mask, (b, max_num_obj, h*w)
|
|
|
mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes)
|
|
mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes)
|
|
|
|
|
+ # get anchor_align metric, (b, max_num_obj, h*w)
|
|
|
|
|
+ align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts)
|
|
|
# get topk_metric mask, (b, max_num_obj, h*w)
|
|
# get topk_metric mask, (b, max_num_obj, h*w)
|
|
|
- mask_topk = self.select_topk_candidates(align_metric * mask_in_gts)
|
|
|
|
|
|
|
+ mask_topk = self.select_topk_candidates(align_metric)
|
|
|
# merge all mask to a final mask, (b, max_num_obj, h*w)
|
|
# merge all mask to a final mask, (b, max_num_obj, h*w)
|
|
|
mask_pos = mask_topk * mask_in_gts
|
|
mask_pos = mask_topk * mask_in_gts
|
|
|
|
|
|
|
|
return mask_pos, align_metric, overlaps
|
|
return mask_pos, align_metric, overlaps
|
|
|
|
|
|
|
|
- def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes):
|
|
|
|
|
|
|
+ def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts):
|
|
|
|
|
+ """Compute alignment metric given predicted and ground truth bounding boxes."""
|
|
|
|
|
+ na = pd_bboxes.shape[-2]
|
|
|
|
|
+ mask_in_gts = mask_in_gts.bool() # b, max_num_obj, h*w
|
|
|
|
|
+ overlaps = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_bboxes.dtype, device=pd_bboxes.device)
|
|
|
|
|
+ bbox_scores = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_scores.dtype, device=pd_scores.device)
|
|
|
|
|
+
|
|
|
ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) # 2, b, max_num_obj
|
|
ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) # 2, b, max_num_obj
|
|
|
- ind[0] = torch.arange(end=self.bs).view(-1, 1).repeat(1, self.n_max_boxes) # b, max_num_obj
|
|
|
|
|
- ind[1] = gt_labels.long().squeeze(-1) # b, max_num_obj
|
|
|
|
|
- # get the scores of each grid for each gt cls
|
|
|
|
|
- bbox_scores = pd_scores[ind[0], :, ind[1]] # b, max_num_obj, h*w
|
|
|
|
|
|
|
+ ind[0] = torch.arange(end=self.bs).view(-1, 1).expand(-1, self.n_max_boxes) # b, max_num_obj
|
|
|
|
|
+ ind[1] = gt_labels.squeeze(-1) # b, max_num_obj
|
|
|
|
|
+ # Get the scores of each grid for each gt cls
|
|
|
|
|
+ bbox_scores[mask_in_gts] = pd_scores[ind[0], :, ind[1]][mask_in_gts] # b, max_num_obj, h*w
|
|
|
|
|
|
|
|
- overlaps = bbox_iou(gt_bboxes.unsqueeze(2), pd_bboxes.unsqueeze(1), xywh=False,
|
|
|
|
|
- CIoU=True).squeeze(3).clamp(0)
|
|
|
|
|
- align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta)
|
|
|
|
|
|
|
+ # (b, max_num_obj, 1, 4), (b, 1, h*w, 4)
|
|
|
|
|
+ pd_boxes = pd_bboxes.unsqueeze(1).expand(-1, self.n_max_boxes, -1, -1)[mask_in_gts]
|
|
|
|
|
+ gt_boxes = gt_bboxes.unsqueeze(2).expand(-1, -1, na, -1)[mask_in_gts]
|
|
|
|
|
+ overlaps[mask_in_gts] = bbox_iou(gt_boxes, pd_boxes, xywh=False, CIoU=True).squeeze(-1).clamp_(0)
|
|
|
|
|
|
|
|
|
|
+ align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta)
|
|
|
return align_metric, overlaps
|
|
return align_metric, overlaps
|
|
|
|
|
|
|
|
def select_topk_candidates(self, metrics, largest=True):
|
|
def select_topk_candidates(self, metrics, largest=True):
|
|
@@ -80,31 +88,42 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
metrics: (b, max_num_obj, h*w).
|
|
metrics: (b, max_num_obj, h*w).
|
|
|
topk_mask: (b, max_num_obj, topk) or None
|
|
topk_mask: (b, max_num_obj, topk) or None
|
|
|
"""
|
|
"""
|
|
|
- num_anchors = metrics.shape[-1] # h*w
|
|
|
|
|
# (b, max_num_obj, topk)
|
|
# (b, max_num_obj, topk)
|
|
|
topk_metrics, topk_idxs = torch.topk(metrics, self.topk_candidates, dim=-1, largest=largest)
|
|
topk_metrics, topk_idxs = torch.topk(metrics, self.topk_candidates, dim=-1, largest=largest)
|
|
|
- topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).tile([1, 1, self.topk_candidates])
|
|
|
|
|
|
|
+ topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).expand_as(topk_idxs)
|
|
|
# (b, max_num_obj, topk)
|
|
# (b, max_num_obj, topk)
|
|
|
- topk_idxs[~topk_mask] = 0
|
|
|
|
|
|
|
+ topk_idxs.masked_fill_(~topk_mask, 0)
|
|
|
|
|
+
|
|
|
# (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)
|
|
# (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)
|
|
|
- is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(-2)
|
|
|
|
|
- # filter invalid bboxes
|
|
|
|
|
- is_in_topk = torch.where(is_in_topk > 1, 0, is_in_topk)
|
|
|
|
|
-
|
|
|
|
|
- return is_in_topk.to(metrics.dtype)
|
|
|
|
|
|
|
+ count_tensor = torch.zeros(metrics.shape, dtype=torch.int8, device=topk_idxs.device)
|
|
|
|
|
+ ones = torch.ones_like(topk_idxs[:, :, :1], dtype=torch.int8, device=topk_idxs.device)
|
|
|
|
|
+ for k in range(self.topk_candidates):
|
|
|
|
|
+ # Expand topk_idxs for each value of k and add 1 at the specified positions
|
|
|
|
|
+ count_tensor.scatter_add_(-1, topk_idxs[:, :, k:k + 1], ones)
|
|
|
|
|
+ # count_tensor.scatter_add_(-1, topk_idxs, torch.ones_like(topk_idxs, dtype=torch.int8, device=topk_idxs.device))
|
|
|
|
|
+ # Filter invalid bboxes
|
|
|
|
|
+ count_tensor.masked_fill_(count_tensor > 1, 0)
|
|
|
|
|
+
|
|
|
|
|
+ return count_tensor.to(metrics.dtype)
|
|
|
|
|
|
|
|
def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
|
|
def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
|
|
|
- # assigned target labels, (b, 1)
|
|
|
|
|
|
|
+ # Assigned target labels, (b, 1)
|
|
|
batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
|
|
batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
|
|
|
target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w)
|
|
target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w)
|
|
|
target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w)
|
|
target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w)
|
|
|
|
|
|
|
|
- # assigned target boxes, (b, max_num_obj, 4) -> (b, h*w)
|
|
|
|
|
|
|
+ # Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w, 4)
|
|
|
target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx]
|
|
target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx]
|
|
|
|
|
|
|
|
- # assigned target scores
|
|
|
|
|
- target_labels.clamp(0)
|
|
|
|
|
- target_scores = F.one_hot(target_labels, self.num_classes) # (b, h*w, 80)
|
|
|
|
|
|
|
+ # Assigned target scores
|
|
|
|
|
+ target_labels.clamp_(0)
|
|
|
|
|
+
|
|
|
|
|
+ # 10x faster than F.one_hot()
|
|
|
|
|
+ target_scores = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.num_classes),
|
|
|
|
|
+ dtype=torch.int64,
|
|
|
|
|
+ device=target_labels.device) # (b, h*w, 80)
|
|
|
|
|
+ target_scores.scatter_(2, target_labels.unsqueeze(-1), 1)
|
|
|
|
|
+
|
|
|
fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80)
|
|
fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80)
|
|
|
target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)
|
|
target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)
|
|
|
|
|
|
|
@@ -143,16 +162,20 @@ def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
|
|
|
fg_mask (Tensor): shape(bs, num_total_anchors)
|
|
fg_mask (Tensor): shape(bs, num_total_anchors)
|
|
|
mask_pos (Tensor): shape(bs, n_max_boxes, num_total_anchors)
|
|
mask_pos (Tensor): shape(bs, n_max_boxes, num_total_anchors)
|
|
|
"""
|
|
"""
|
|
|
- fg_mask = mask_pos.sum(axis=-2)
|
|
|
|
|
- if fg_mask.max() > 1:
|
|
|
|
|
- mask_multi_gts = (fg_mask.unsqueeze(1) > 1).repeat([1, n_max_boxes, 1])
|
|
|
|
|
- max_overlaps_idx = overlaps.argmax(axis=1)
|
|
|
|
|
- is_max_overlaps = F.one_hot(max_overlaps_idx, n_max_boxes)
|
|
|
|
|
- is_max_overlaps = is_max_overlaps.permute(0, 2, 1).to(overlaps.dtype)
|
|
|
|
|
- mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos)
|
|
|
|
|
- fg_mask = mask_pos.sum(axis=-2)
|
|
|
|
|
- target_gt_idx = mask_pos.argmax(axis=-2)
|
|
|
|
|
- return target_gt_idx, fg_mask , mask_pos
|
|
|
|
|
|
|
+ fg_mask = mask_pos.sum(-2)
|
|
|
|
|
+ if fg_mask.max() > 1: # one anchor is assigned to multiple gt_bboxes
|
|
|
|
|
+ mask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1) # (b, n_max_boxes, h*w)
|
|
|
|
|
+ max_overlaps_idx = overlaps.argmax(1) # (b, h*w)
|
|
|
|
|
+
|
|
|
|
|
+ is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device)
|
|
|
|
|
+ is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1)
|
|
|
|
|
+
|
|
|
|
|
+ mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float() # (b, n_max_boxes, h*w)
|
|
|
|
|
+ fg_mask = mask_pos.sum(-2)
|
|
|
|
|
+ # Find each grid serve which gt(index)
|
|
|
|
|
+ target_gt_idx = mask_pos.argmax(-2) # (b, h*w)
|
|
|
|
|
+
|
|
|
|
|
+ return target_gt_idx, fg_mask, mask_pos
|
|
|
|
|
|
|
|
def iou_calculator(box1, box2, eps=1e-9):
|
|
def iou_calculator(box1, box2, eps=1e-9):
|
|
|
"""Calculate iou for batch
|
|
"""Calculate iou for batch
|