rtcdet_pred.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. import torch.nn.functional as F
  5. def build_det_pred(cls_dim, reg_dim, strides, num_classes, num_coords=4, reg_max=16, num_levels=3):
  6. pred_layers = MDetPDLayer(cls_dim = cls_dim,
  7. reg_dim = reg_dim,
  8. strides = strides,
  9. num_classes = num_classes,
  10. num_coords = num_coords,
  11. num_levels = num_levels,
  12. reg_max = reg_max)
  13. return pred_layers
  14. def build_seg_pred():
  15. return MaskPDLayer()
  16. def build_pose_pred():
  17. return PosePDLayer()
  18. # ---------------------------- Detection predictor ----------------------------
  19. ## Single-level Detection Prediction Layer
  20. class SDetPDLayer(nn.Module):
  21. def __init__(self,
  22. cls_dim :int = 256,
  23. reg_dim :int = 256,
  24. stride :int = 32,
  25. reg_max :int = 16,
  26. num_classes :int = 80,
  27. num_coords :int = 4):
  28. super().__init__()
  29. # --------- Basic Parameters ----------
  30. self.stride = stride
  31. self.cls_dim = cls_dim
  32. self.reg_dim = reg_dim
  33. self.reg_max = reg_max
  34. self.num_classes = num_classes
  35. self.num_coords = num_coords
  36. # --------- Network Parameters ----------
  37. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  38. self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
  39. self.init_bias()
  40. def init_bias(self):
  41. # cls pred bias
  42. b = self.cls_pred.bias.view(1, -1)
  43. b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
  44. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  45. # reg pred bias
  46. b = self.reg_pred.bias.view(-1, )
  47. b.data.fill_(1.0)
  48. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  49. def generate_anchors(self, fmp_size):
  50. """
  51. fmp_size: (List) [H, W]
  52. """
  53. # generate grid cells
  54. fmp_h, fmp_w = fmp_size
  55. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  56. # [H, W, 2] -> [HW, 2]
  57. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  58. anchors += 0.5 # add center offset
  59. anchors *= self.stride
  60. return anchors
  61. def forward(self, cls_feat, reg_feat):
  62. # pred
  63. cls_pred = self.cls_pred(cls_feat)
  64. reg_pred = self.reg_pred(reg_feat)
  65. # generate anchor boxes: [M, 4]
  66. B, _, H, W = cls_pred.size()
  67. fmp_size = [H, W]
  68. anchors = self.generate_anchors(fmp_size)
  69. anchors = anchors.to(cls_pred.device)
  70. # stride tensor: [M, 1]
  71. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
  72. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  73. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  74. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
  75. # output dict
  76. outputs = {"pred_cls": cls_pred, # List(Tensor) [B, M, C]
  77. "pred_reg": reg_pred, # List(Tensor) [B, M, 4*(reg_max)]
  78. "anchors": anchors, # List(Tensor) [M, 2]
  79. "strides": self.stride, # List(Int) = [8, 16, 32]
  80. "stride_tensor": stride_tensor # List(Tensor) [M, 1]
  81. }
  82. return outputs
  83. ## Multi-level pred layer
  84. class MDetPDLayer(nn.Module):
  85. def __init__(self,
  86. cls_dim,
  87. reg_dim,
  88. strides,
  89. num_classes :int = 80,
  90. num_coords :int = 4,
  91. num_levels :int = 3,
  92. reg_max :int = 16):
  93. super().__init__()
  94. # --------- Basic Parameters ----------
  95. self.cls_dim = cls_dim
  96. self.reg_dim = reg_dim
  97. self.strides = strides
  98. self.num_classes = num_classes
  99. self.num_coords = num_coords
  100. self.num_levels = num_levels
  101. self.reg_max = reg_max
  102. # ----------- Network Parameters -----------
  103. ## pred layers
  104. self.multi_level_preds = nn.ModuleList(
  105. [SDetPDLayer(cls_dim = cls_dim,
  106. reg_dim = reg_dim,
  107. stride = strides[level],
  108. reg_max = reg_max,
  109. num_classes = num_classes,
  110. num_coords = num_coords * reg_max)
  111. for level in range(num_levels)
  112. ])
  113. ## proj conv
  114. proj_init = torch.arange(reg_max, dtype=torch.float)
  115. self.proj_conv = nn.Conv2d(self.reg_max, 1, kernel_size=1, bias=False).requires_grad_(False)
  116. self.proj_conv.weight.data[:] = nn.Parameter(proj_init.view([1, reg_max, 1, 1]))
  117. def forward(self, inputs):
  118. cls_feats, reg_feats = inputs['cls_feat'], inputs['reg_feat']
  119. all_anchors = []
  120. all_strides = []
  121. all_cls_preds = []
  122. all_reg_preds = []
  123. all_box_preds = []
  124. all_delta_preds = []
  125. for level in range(self.num_levels):
  126. # -------------- Single-level prediction --------------
  127. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  128. # -------------- Decode bbox --------------
  129. B, M = outputs["pred_reg"].shape[:2]
  130. # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max]
  131. delta_pred = outputs["pred_reg"].reshape([B, M, 4, self.reg_max])
  132. # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
  133. delta_pred = delta_pred.permute(0, 3, 2, 1).contiguous()
  134. # [B, reg_max, 4, M] -> [B, 1, 4, M]
  135. delta_pred = self.proj_conv(F.softmax(delta_pred, dim=1))
  136. # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
  137. delta_pred = delta_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
  138. ## tlbr -> xyxy
  139. x1y1_pred = outputs["anchors"][None] - delta_pred[..., :2] * self.strides[level]
  140. x2y2_pred = outputs["anchors"][None] + delta_pred[..., 2:] * self.strides[level]
  141. box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
  142. # collect results
  143. all_cls_preds.append(outputs["pred_cls"])
  144. all_reg_preds.append(outputs["pred_reg"])
  145. all_box_preds.append(box_pred)
  146. all_delta_preds.append(delta_pred)
  147. all_anchors.append(outputs["anchors"])
  148. all_strides.append(outputs["stride_tensor"])
  149. # output dict
  150. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  151. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  152. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  153. "pred_delta": all_delta_preds, # List(Tensor) [B, M, 4]
  154. "anchors": all_anchors, # List(Tensor) [M, 2]
  155. "strides": self.strides, # List(Int) = [8, 16, 32]
  156. "stride_tensor": all_strides # List(Tensor) [M, 1]
  157. }
  158. return outputs
  159. # -------------------- Segmentation predictor --------------------
  160. class MaskPDLayer(nn.Module):
  161. def __init__(self, *args, **kwargs) -> None:
  162. super().__init__(*args, **kwargs)
  163. def forward(self, x):
  164. return
  165. # -------------------- Human-Pose predictor --------------------
  166. class PosePDLayer(nn.Module):
  167. def __init__(self, *args, **kwargs) -> None:
  168. super().__init__(*args, **kwargs)
  169. def forward(self, x):
  170. return