|
|
@@ -7,7 +7,7 @@ from .yolov8_neck import build_neck
|
|
|
from .yolov8_pafpn import build_fpn
|
|
|
from .yolov8_head import build_head
|
|
|
|
|
|
-from utils.nms import multiclass_nms
|
|
|
+from utils.misc import multiclass_nms
|
|
|
|
|
|
|
|
|
# Anchor-free YOLO
|
|
|
@@ -63,38 +63,9 @@ class YOLOv8(nn.Module):
|
|
|
for head in self.non_shared_heads
|
|
|
])
|
|
|
|
|
|
- # --------- Network Initialization ----------
|
|
|
- # init bias
|
|
|
- self.init_yolo()
|
|
|
-
|
|
|
-
|
|
|
- def init_yolo(self):
|
|
|
- # Init yolo
|
|
|
- for m in self.modules():
|
|
|
- if isinstance(m, nn.BatchNorm2d):
|
|
|
- m.eps = 1e-3
|
|
|
- m.momentum = 0.03
|
|
|
- # Init bias
|
|
|
- init_prob = 0.01
|
|
|
- bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
|
|
|
- # cls pred
|
|
|
- for cls_pred in self.cls_preds:
|
|
|
- b = cls_pred.bias.view(1, -1)
|
|
|
- b.data.fill_(bias_value.item())
|
|
|
- cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
|
- for reg_pred in self.reg_preds:
|
|
|
- b = reg_pred.bias.view(-1, )
|
|
|
- b.data.fill_(1.0)
|
|
|
- reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
|
- w = reg_pred.weight
|
|
|
- w.data.fill_(0.)
|
|
|
- reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
|
|
|
-
|
|
|
- self.proj = nn.Parameter(torch.linspace(0, self.reg_max, self.reg_max), requires_grad=False)
|
|
|
- self.proj_conv.weight = nn.Parameter(self.proj.view([1, self.reg_max, 1, 1]).clone().detach(),
|
|
|
- requires_grad=False)
|
|
|
-
|
|
|
|
|
|
+ # ---------------------- Basic Functions ----------------------
|
|
|
+ ## generate anchor points
|
|
|
def generate_anchors(self, level, fmp_size):
|
|
|
"""
|
|
|
fmp_size: (List) [H, W]
|
|
|
@@ -109,70 +80,39 @@ class YOLOv8(nn.Module):
|
|
|
|
|
|
return anchors
|
|
|
|
|
|
-
|
|
|
- def decode_boxes(self, anchors, pred_regs, stride):
|
|
|
- """
|
|
|
- Input:
|
|
|
- anchors: (List[Tensor]) [1, M, 2]
|
|
|
- pred_reg: (List[Tensor]) [B, M, 4*(reg_max)]
|
|
|
- Output:
|
|
|
- pred_box: (Tensor) [B, M, 4]
|
|
|
- """
|
|
|
- if self.use_dfl:
|
|
|
- B, M = pred_regs.shape[:2]
|
|
|
- # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max] -> [B, 4, M, reg_max]
|
|
|
- pred_regs = pred_regs.reshape([B, M, 4, self.reg_max])
|
|
|
- # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
|
|
|
- pred_regs = pred_regs.permute(0, 3, 2, 1).contiguous()
|
|
|
- # [B, reg_max, 4, M] -> [B, 1, 4, M]
|
|
|
- pred_regs = self.proj_conv(F.softmax(pred_regs, dim=1))
|
|
|
- # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
|
|
|
- pred_regs = pred_regs.view(B, 4, M).permute(0, 2, 1).contiguous()
|
|
|
-
|
|
|
- # tlbr -> xyxy
|
|
|
- pred_x1y1 = anchors - pred_regs[..., :2] * stride
|
|
|
- pred_x2y2 = anchors + pred_regs[..., 2:] * stride
|
|
|
- pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
|
|
|
-
|
|
|
- return pred_box
|
|
|
-
|
|
|
-
|
|
|
- def post_process(self, cls_preds, reg_preds, anchors):
|
|
|
+ ## post-process
|
|
|
+ def post_process(self, cls_preds, box_preds):
|
|
|
"""
|
|
|
Input:
|
|
|
- cls_preds: List(Tensor) [[B, H x W, C], ...]
|
|
|
- reg_preds: List(Tensor) [[B, H x W, 4*(reg_max)], ...]
|
|
|
+ cls_preds: List(Tensor) [[H x W, C], ...]
|
|
|
+ box_preds: List(Tensor) [[H x W, 4], ...]
|
|
|
anchors: List(Tensor) [[H x W, 2], ...]
|
|
|
"""
|
|
|
all_scores = []
|
|
|
all_labels = []
|
|
|
all_bboxes = []
|
|
|
|
|
|
- for level, (cls_pred_i, reg_pred_i, anchors_i) in enumerate(zip(cls_preds, reg_preds, anchors)):
|
|
|
- # [B, M, C] -> [M, C]
|
|
|
- cur_cls_pred_i = cls_pred_i[0]
|
|
|
- cur_reg_pred_i = reg_pred_i[0]
|
|
|
- # [MC,]
|
|
|
- scores_i = cur_cls_pred_i.sigmoid().flatten()
|
|
|
+ for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
|
|
|
+ # (H x W x KA x C,)
|
|
|
+ scores_i = cls_pred_i.sigmoid().flatten()
|
|
|
|
|
|
# Keep top k top scoring indices only.
|
|
|
- num_topk = min(self.topk, cur_reg_pred_i.size(0))
|
|
|
+ num_topk = min(self.topk, box_pred_i.size(0))
|
|
|
|
|
|
# torch.sort is actually faster than .topk (at least on GPUs)
|
|
|
predicted_prob, topk_idxs = scores_i.sort(descending=True)
|
|
|
- scores = predicted_prob[:num_topk]
|
|
|
+ topk_scores = predicted_prob[:num_topk]
|
|
|
topk_idxs = topk_idxs[:num_topk]
|
|
|
|
|
|
+ # filter out the proposals with low confidence score
|
|
|
+ keep_idxs = topk_scores > self.conf_thresh
|
|
|
+ scores = topk_scores[keep_idxs]
|
|
|
+ topk_idxs = topk_idxs[keep_idxs]
|
|
|
+
|
|
|
anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
|
|
|
labels = topk_idxs % self.num_classes
|
|
|
|
|
|
- cur_reg_pred_i = cur_reg_pred_i[anchor_idxs]
|
|
|
- anchors_i = anchors_i[anchor_idxs]
|
|
|
-
|
|
|
- # decode box: [M, 4]
|
|
|
- box_pred_i = self.decode_boxes(
|
|
|
- anchors_i[None], cur_reg_pred_i[None], self.stride[level])
|
|
|
- bboxes = box_pred_i[0]
|
|
|
+ bboxes = box_pred_i[anchor_idxs]
|
|
|
|
|
|
all_scores.append(scores)
|
|
|
all_labels.append(labels)
|
|
|
@@ -182,12 +122,6 @@ class YOLOv8(nn.Module):
|
|
|
labels = torch.cat(all_labels)
|
|
|
bboxes = torch.cat(all_bboxes)
|
|
|
|
|
|
- # threshold
|
|
|
- keep_idxs = scores.gt(self.conf_thresh)
|
|
|
- scores = scores[keep_idxs]
|
|
|
- labels = labels[keep_idxs]
|
|
|
- bboxes = bboxes[keep_idxs]
|
|
|
-
|
|
|
# to cpu & numpy
|
|
|
scores = scores.cpu().numpy()
|
|
|
labels = labels.cpu().numpy()
|
|
|
@@ -200,6 +134,7 @@ class YOLOv8(nn.Module):
|
|
|
return bboxes, scores, labels
|
|
|
|
|
|
|
|
|
+ # ---------------------- Main Process for Inference ----------------------
|
|
|
@torch.no_grad()
|
|
|
def inference_single_image(self, x):
|
|
|
# backbone
|
|
|
@@ -213,7 +148,7 @@ class YOLOv8(nn.Module):
|
|
|
|
|
|
# non-shared heads
|
|
|
all_cls_preds = []
|
|
|
- all_reg_preds = []
|
|
|
+ all_box_preds = []
|
|
|
all_anchors = []
|
|
|
for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
|
|
|
cls_feat, reg_feat = head(feat)
|
|
|
@@ -231,17 +166,33 @@ class YOLOv8(nn.Module):
|
|
|
cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
|
|
|
reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
|
|
|
|
|
|
+ # decode bbox
|
|
|
+ if self.use_dfl:
|
|
|
+ B, M = reg_pred.shape[:2]
|
|
|
+ # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max] -> [B, 4, M, reg_max]
|
|
|
+ reg_pred = reg_pred.reshape([B, M, 4, self.reg_max])
|
|
|
+ # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
|
|
|
+ reg_pred = reg_pred.permute(0, 3, 2, 1).contiguous()
|
|
|
+ # [B, reg_max, 4, M] -> [B, 1, 4, M]
|
|
|
+ reg_pred = self.proj_conv(F.softmax(reg_pred, dim=1))
|
|
|
+ # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
|
|
|
+ reg_pred = reg_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
|
|
|
+ pred_x1y1 = anchors - reg_pred[..., :2] * self.stride[level]
|
|
|
+ pred_x2y2 = anchors + reg_pred[..., 2:] * self.stride[level]
|
|
|
+ box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
|
|
|
+
|
|
|
all_cls_preds.append(cls_pred)
|
|
|
- all_reg_preds.append(reg_pred)
|
|
|
+ all_box_preds.append(box_pred)
|
|
|
all_anchors.append(anchors)
|
|
|
|
|
|
# post process
|
|
|
bboxes, scores, labels = self.post_process(
|
|
|
- all_cls_preds, all_reg_preds, all_anchors)
|
|
|
+ all_cls_preds, all_box_preds, all_anchors)
|
|
|
|
|
|
return bboxes, scores, labels
|
|
|
|
|
|
|
|
|
+ # ---------------------- Main Process for Training ----------------------
|
|
|
def forward(self, x):
|
|
|
if not self.trainable:
|
|
|
return self.inference_single_image(x)
|
|
|
@@ -277,8 +228,22 @@ class YOLOv8(nn.Module):
|
|
|
cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
|
|
|
reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
|
|
|
|
|
|
- # decode box: [B, M, 4]
|
|
|
- box_pred = self.decode_boxes(anchors, reg_pred, self.stride[level])
|
|
|
+ # decode bbox
|
|
|
+ if self.use_dfl:
|
|
|
+ B, M = reg_pred.shape[:2]
|
|
|
+ # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max] -> [B, 4, M, reg_max]
|
|
|
+ reg_pred_ = reg_pred.reshape([B, M, 4, self.reg_max]).clone()
|
|
|
+ # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
|
|
|
+ reg_pred_ = reg_pred_.permute(0, 3, 2, 1).contiguous()
|
|
|
+ # [B, reg_max, 4, M] -> [B, 1, 4, M]
|
|
|
+ reg_pred_ = self.proj_conv(F.softmax(reg_pred_, dim=1))
|
|
|
+ # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
|
|
|
+ reg_pred_ = reg_pred_.view(B, 4, M).permute(0, 2, 1).contiguous()
|
|
|
+ pred_x1y1 = anchors - reg_pred_[..., :2] * self.stride[level]
|
|
|
+ pred_x2y2 = anchors + reg_pred_[..., 2:] * self.stride[level]
|
|
|
+ box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
|
|
|
+
|
|
|
+ del reg_pred_
|
|
|
|
|
|
# stride tensor: [M, 1]
|
|
|
stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride[level]
|