yolov8.py 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from .yolov8_backbone import build_backbone
  5. from .yolov8_neck import build_neck
  6. from .yolov8_pafpn import build_fpn
  7. from .yolov8_head import build_head
  8. from utils.misc import multiclass_nms
  9. # Anchor-free YOLO
  10. class YOLOv8(nn.Module):
  11. def __init__(self,
  12. cfg,
  13. device,
  14. num_classes = 20,
  15. conf_thresh = 0.05,
  16. nms_thresh = 0.6,
  17. trainable = False,
  18. topk = 1000):
  19. super(YOLOv8, self).__init__()
  20. # --------- Basic Parameters ----------
  21. self.cfg = cfg
  22. self.device = device
  23. self.stride = cfg['stride']
  24. self.reg_max = cfg['reg_max']
  25. self.use_dfl = cfg['reg_max'] > 1
  26. self.num_classes = num_classes
  27. self.trainable = trainable
  28. self.conf_thresh = conf_thresh
  29. self.nms_thresh = nms_thresh
  30. self.topk = topk
  31. # --------- Network Parameters ----------
  32. self.proj_conv = nn.Conv2d(self.reg_max, 1, kernel_size=1, bias=False)
  33. ## backbone
  34. self.backbone, feats_dim = build_backbone(cfg, cfg['pretrained']*trainable)
  35. ## neck
  36. self.neck = build_neck(cfg=cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1])
  37. feats_dim[-1] = self.neck.out_dim
  38. ## fpn
  39. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim)
  40. fpn_dims = self.fpn.out_dim
  41. ## non-shared heads
  42. self.non_shared_heads = nn.ModuleList(
  43. [build_head(cfg, feat_dim, fpn_dims, num_classes)
  44. for feat_dim in fpn_dims
  45. ])
  46. ## pred
  47. self.cls_preds = nn.ModuleList(
  48. [nn.Conv2d(head.cls_out_dim, self.num_classes, kernel_size=1)
  49. for head in self.non_shared_heads
  50. ])
  51. self.reg_preds = nn.ModuleList(
  52. [nn.Conv2d(head.reg_out_dim, 4*(cfg['reg_max']), kernel_size=1)
  53. for head in self.non_shared_heads
  54. ])
  55. # ---------------------- Basic Functions ----------------------
  56. ## generate anchor points
  57. def generate_anchors(self, level, fmp_size):
  58. """
  59. fmp_size: (List) [H, W]
  60. """
  61. # generate grid cells
  62. fmp_h, fmp_w = fmp_size
  63. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  64. # [H, W, 2] -> [HW, 2]
  65. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) + 0.5
  66. anchor_xy *= self.stride[level]
  67. anchors = anchor_xy.to(self.device)
  68. return anchors
  69. ## post-process
  70. def post_process(self, cls_preds, box_preds):
  71. """
  72. Input:
  73. cls_preds: List(Tensor) [[H x W, C], ...]
  74. box_preds: List(Tensor) [[H x W, 4], ...]
  75. anchors: List(Tensor) [[H x W, 2], ...]
  76. """
  77. all_scores = []
  78. all_labels = []
  79. all_bboxes = []
  80. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  81. # (H x W x KA x C,)
  82. scores_i = cls_pred_i.sigmoid().flatten()
  83. # Keep top k top scoring indices only.
  84. num_topk = min(self.topk, box_pred_i.size(0))
  85. # torch.sort is actually faster than .topk (at least on GPUs)
  86. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  87. topk_scores = predicted_prob[:num_topk]
  88. topk_idxs = topk_idxs[:num_topk]
  89. # filter out the proposals with low confidence score
  90. keep_idxs = topk_scores > self.conf_thresh
  91. scores = topk_scores[keep_idxs]
  92. topk_idxs = topk_idxs[keep_idxs]
  93. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  94. labels = topk_idxs % self.num_classes
  95. bboxes = box_pred_i[anchor_idxs]
  96. all_scores.append(scores)
  97. all_labels.append(labels)
  98. all_bboxes.append(bboxes)
  99. scores = torch.cat(all_scores)
  100. labels = torch.cat(all_labels)
  101. bboxes = torch.cat(all_bboxes)
  102. # to cpu & numpy
  103. scores = scores.cpu().numpy()
  104. labels = labels.cpu().numpy()
  105. bboxes = bboxes.cpu().numpy()
  106. # nms
  107. scores, labels, bboxes = multiclass_nms(
  108. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  109. return bboxes, scores, labels
  110. # ---------------------- Main Process for Inference ----------------------
  111. @torch.no_grad()
  112. def inference_single_image(self, x):
  113. # backbone
  114. pyramid_feats = self.backbone(x)
  115. # neck
  116. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  117. # fpn
  118. pyramid_feats = self.fpn(pyramid_feats)
  119. # non-shared heads
  120. all_cls_preds = []
  121. all_box_preds = []
  122. all_anchors = []
  123. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  124. cls_feat, reg_feat = head(feat)
  125. # pred
  126. cls_pred = self.cls_preds[level](cls_feat) # [B, C, H, W]
  127. reg_pred = self.reg_preds[level](reg_feat) # [B, 4*(reg_max), H, W]
  128. B, _, H, W = cls_pred.size()
  129. fmp_size = [H, W]
  130. # [M, 2]
  131. anchors = self.generate_anchors(level, fmp_size)
  132. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  133. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  134. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
  135. # decode bbox
  136. if self.use_dfl:
  137. B, M = reg_pred.shape[:2]
  138. # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max] -> [B, 4, M, reg_max]
  139. reg_pred = reg_pred.reshape([B, M, 4, self.reg_max])
  140. # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
  141. reg_pred = reg_pred.permute(0, 3, 2, 1).contiguous()
  142. # [B, reg_max, 4, M] -> [B, 1, 4, M]
  143. reg_pred = self.proj_conv(F.softmax(reg_pred, dim=1))
  144. # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
  145. reg_pred = reg_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
  146. pred_x1y1 = anchors - reg_pred[..., :2] * self.stride[level]
  147. pred_x2y2 = anchors + reg_pred[..., 2:] * self.stride[level]
  148. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  149. all_cls_preds.append(cls_pred)
  150. all_box_preds.append(box_pred)
  151. all_anchors.append(anchors)
  152. # post process
  153. bboxes, scores, labels = self.post_process(
  154. all_cls_preds, all_box_preds, all_anchors)
  155. return bboxes, scores, labels
  156. # ---------------------- Main Process for Training ----------------------
  157. def forward(self, x):
  158. if not self.trainable:
  159. return self.inference_single_image(x)
  160. else:
  161. # backbone
  162. pyramid_feats = self.backbone(x)
  163. # neck
  164. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  165. # fpn
  166. pyramid_feats = self.fpn(pyramid_feats)
  167. # non-shared heads
  168. all_anchors = []
  169. all_cls_preds = []
  170. all_reg_preds = []
  171. all_box_preds = []
  172. all_strides = []
  173. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  174. cls_feat, reg_feat = head(feat)
  175. # pred
  176. cls_pred = self.cls_preds[level](cls_feat) # [B, C, H, W]
  177. reg_pred = self.reg_preds[level](reg_feat) # [B, 4*(reg_max), H, W]
  178. B, _, H, W = cls_pred.size()
  179. fmp_size = [H, W]
  180. # generate anchor boxes: [M, 2]
  181. anchors = self.generate_anchors(level, fmp_size)
  182. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  183. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  184. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
  185. # decode bbox
  186. if self.use_dfl:
  187. B, M = reg_pred.shape[:2]
  188. # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max] -> [B, 4, M, reg_max]
  189. reg_pred_ = reg_pred.reshape([B, M, 4, self.reg_max]).clone()
  190. # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
  191. reg_pred_ = reg_pred_.permute(0, 3, 2, 1).contiguous()
  192. # [B, reg_max, 4, M] -> [B, 1, 4, M]
  193. reg_pred_ = self.proj_conv(F.softmax(reg_pred_, dim=1))
  194. # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
  195. reg_pred_ = reg_pred_.view(B, 4, M).permute(0, 2, 1).contiguous()
  196. pred_x1y1 = anchors - reg_pred_[..., :2] * self.stride[level]
  197. pred_x2y2 = anchors + reg_pred_[..., 2:] * self.stride[level]
  198. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  199. del reg_pred_
  200. # stride tensor: [M, 1]
  201. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride[level]
  202. all_cls_preds.append(cls_pred)
  203. all_reg_preds.append(reg_pred)
  204. all_box_preds.append(box_pred)
  205. all_anchors.append(anchors)
  206. all_strides.append(stride_tensor)
  207. # output dict
  208. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  209. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  210. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  211. "anchors": all_anchors, # List(Tensor) [M, 2]
  212. "strides": self.stride, # List(Int) = [8, 16, 32]
  213. "stride_tensor": all_strides # List(Tensor) [M, 1]
  214. }
  215. return outputs