|
|
@@ -1098,24 +1098,30 @@ class RTCTrainer(object):
|
|
|
self.train_loader.dataset.transform = self.train_transform
|
|
|
|
|
|
|
|
|
-# Trainer for DETR
|
|
|
-class DetrTrainer(object):
|
|
|
+# RTRDet Trainer
|
|
|
+class RTRTrainer(object):
|
|
|
def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
|
|
|
- # ------------------- basic parameters -------------------
|
|
|
+ # ------------------- Basic parameters -------------------
|
|
|
self.args = args
|
|
|
self.epoch = 0
|
|
|
self.best_map = -1.
|
|
|
- self.last_opt_step = 0
|
|
|
- self.no_aug_epoch = args.no_aug_epoch
|
|
|
- self.clip_grad = -1
|
|
|
self.device = device
|
|
|
self.criterion = criterion
|
|
|
self.world_size = world_size
|
|
|
- self.second_stage = False
|
|
|
+ self.grad_accumulate = args.grad_accumulate
|
|
|
+ self.clip_grad = 35
|
|
|
self.heavy_eval = False
|
|
|
- self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.001, 'backbone_lr_raio': 0.1}
|
|
|
+ # weak augmentatino stage
|
|
|
+ self.second_stage = False
|
|
|
+ self.third_stage = False
|
|
|
+ self.second_stage_epoch = args.no_aug_epoch
|
|
|
+ self.third_stage_epoch = args.no_aug_epoch // 2
|
|
|
+ # path to save model
|
|
|
+
|
|
|
+ # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
|
|
|
+ self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.001, 'backbone_lr_ratio': 0.1}
|
|
|
self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
|
|
|
- self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
|
|
|
+ self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
|
|
|
self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
|
|
|
|
|
|
# ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
|
|
|
@@ -1125,26 +1131,26 @@ class DetrTrainer(object):
|
|
|
|
|
|
# ---------------------------- Build Transform ----------------------------
|
|
|
self.train_transform, self.trans_cfg = build_transform(
|
|
|
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
+ args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
self.val_transform, _ = build_transform(
|
|
|
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
|
|
|
+ args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
|
|
|
|
|
|
# ---------------------------- Build Dataset & Dataloader ----------------------------
|
|
|
- self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
|
|
|
- self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
|
|
|
+ self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
|
|
|
+ self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
|
|
|
|
|
|
# ---------------------------- Build Evaluator ----------------------------
|
|
|
- self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
|
|
|
+ self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
|
|
|
|
|
|
# ---------------------------- Build Grad. Scaler ----------------------------
|
|
|
- self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
|
|
|
+ self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
|
|
|
|
|
|
# ---------------------------- Build Optimizer ----------------------------
|
|
|
- self.optimizer_dict['lr0'] *= self.args.batch_size / 16.
|
|
|
+ self.optimizer_dict['lr0'] *= self.args.batch_size / 64.
|
|
|
self.optimizer, self.start_epoch = build_detr_optimizer(self.optimizer_dict, model, self.args.resume)
|
|
|
|
|
|
# ---------------------------- Build LR Scheduler ----------------------------
|
|
|
- self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
|
|
|
+ self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
|
|
|
self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
|
|
|
if self.args.resume:
|
|
|
self.lr_scheduler.step()
|
|
|
@@ -1157,49 +1163,38 @@ class DetrTrainer(object):
|
|
|
self.model_ema = None
|
|
|
|
|
|
|
|
|
- def check_second_stage(self):
|
|
|
- # set second stage
|
|
|
- print('============== Second stage of Training ==============')
|
|
|
- self.second_stage = True
|
|
|
-
|
|
|
- # close mosaic augmentation
|
|
|
- if self.train_loader.dataset.mosaic_prob > 0.:
|
|
|
- print(' - Close < Mosaic Augmentation > ...')
|
|
|
- self.train_loader.dataset.mosaic_prob = 0.
|
|
|
- self.heavy_eval = True
|
|
|
-
|
|
|
- # close mixup augmentation
|
|
|
- if self.train_loader.dataset.mixup_prob > 0.:
|
|
|
- print(' - Close < Mixup Augmentation > ...')
|
|
|
- self.train_loader.dataset.mixup_prob = 0.
|
|
|
- self.heavy_eval = True
|
|
|
-
|
|
|
- # close rotation augmentation
|
|
|
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
|
|
|
- print(' - Close < degress of rotation > ...')
|
|
|
- self.trans_cfg['degrees'] = 0.0
|
|
|
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
|
|
|
- print(' - Close < shear of rotation >...')
|
|
|
- self.trans_cfg['shear'] = 0.0
|
|
|
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
|
|
|
- print(' - Close < perspective of rotation > ...')
|
|
|
- self.trans_cfg['perspective'] = 0.0
|
|
|
-
|
|
|
- # build a new transform for second stage
|
|
|
- print(' - Rebuild transforms ...')
|
|
|
- self.train_transform, self.trans_cfg = build_transform(
|
|
|
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
- self.train_loader.dataset.transform = self.train_transform
|
|
|
-
|
|
|
-
|
|
|
def train(self, model):
|
|
|
for epoch in range(self.start_epoch, self.args.max_epoch):
|
|
|
if self.args.distributed:
|
|
|
self.train_loader.batch_sampler.sampler.set_epoch(epoch)
|
|
|
|
|
|
# check second stage
|
|
|
- if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
|
|
|
+ if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
|
|
|
self.check_second_stage()
|
|
|
+ # save model of the last mosaic epoch
|
|
|
+ weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
|
|
|
+ checkpoint_path = os.path.join(self.path_to_save, weight_name)
|
|
|
+ print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch + 1))
|
|
|
+ torch.save({'model': model.state_dict(),
|
|
|
+ 'mAP': round(self.evaluator.map*100, 1),
|
|
|
+ 'optimizer': self.optimizer.state_dict(),
|
|
|
+ 'epoch': self.epoch,
|
|
|
+ 'args': self.args},
|
|
|
+ checkpoint_path)
|
|
|
+
|
|
|
+ # check third stage
|
|
|
+ if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
|
|
|
+ self.check_third_stage()
|
|
|
+ # save model of the last mosaic epoch
|
|
|
+ weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
|
|
|
+ checkpoint_path = os.path.join(self.path_to_save, weight_name)
|
|
|
+ print('Saving state of the last weak augment epoch-{}.'.format(self.epoch + 1))
|
|
|
+ torch.save({'model': model.state_dict(),
|
|
|
+ 'mAP': round(self.evaluator.map*100, 1),
|
|
|
+ 'optimizer': self.optimizer.state_dict(),
|
|
|
+ 'epoch': self.epoch,
|
|
|
+ 'args': self.args},
|
|
|
+ checkpoint_path)
|
|
|
|
|
|
# train one epoch
|
|
|
self.epoch = epoch
|
|
|
@@ -1219,23 +1214,19 @@ class DetrTrainer(object):
|
|
|
# chech model
|
|
|
model_eval = model if self.model_ema is None else self.model_ema.ema
|
|
|
|
|
|
- # path to save model
|
|
|
- path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
|
|
|
- os.makedirs(path_to_save, exist_ok=True)
|
|
|
-
|
|
|
if distributed_utils.is_main_process():
|
|
|
# check evaluator
|
|
|
if self.evaluator is None:
|
|
|
print('No evaluator ... save model and go on training.')
|
|
|
print('Saving state, epoch: {}'.format(self.epoch + 1))
|
|
|
weight_name = '{}_no_eval.pth'.format(self.args.model)
|
|
|
- checkpoint_path = os.path.join(path_to_save, weight_name)
|
|
|
+ checkpoint_path = os.path.join(self.path_to_save, weight_name)
|
|
|
torch.save({'model': model_eval.state_dict(),
|
|
|
'mAP': -1.,
|
|
|
'optimizer': self.optimizer.state_dict(),
|
|
|
'epoch': self.epoch,
|
|
|
'args': self.args},
|
|
|
- checkpoint_path)
|
|
|
+ checkpoint_path)
|
|
|
else:
|
|
|
print('eval ...')
|
|
|
# set eval mode
|
|
|
@@ -1254,7 +1245,7 @@ class DetrTrainer(object):
|
|
|
# save model
|
|
|
print('Saving state, epoch:', self.epoch + 1)
|
|
|
weight_name = '{}_best.pth'.format(self.args.model)
|
|
|
- checkpoint_path = os.path.join(path_to_save, weight_name)
|
|
|
+ checkpoint_path = os.path.join(self.path_to_save, weight_name)
|
|
|
torch.save({'model': model_eval.state_dict(),
|
|
|
'mAP': round(self.best_map*100, 1),
|
|
|
'optimizer': self.optimizer.state_dict(),
|
|
|
@@ -1278,7 +1269,7 @@ class DetrTrainer(object):
|
|
|
t0 = time.time()
|
|
|
nw = epoch_size * self.args.wp_epoch
|
|
|
|
|
|
- # train one epoch
|
|
|
+ # Train one epoch
|
|
|
for iter_i, (images, targets) in enumerate(self.train_loader):
|
|
|
ni = iter_i + self.epoch * epoch_size
|
|
|
# Warmup
|
|
|
@@ -1286,10 +1277,9 @@ class DetrTrainer(object):
|
|
|
xi = [0, nw] # x interp
|
|
|
for j, x in enumerate(self.optimizer.param_groups):
|
|
|
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
|
|
- x['lr'] = np.interp(
|
|
|
- ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
|
|
|
+ x['lr'] = np.interp( ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
|
|
|
if 'momentum' in x:
|
|
|
- x['momentum'] = np.interp(ni, xi, [self.model_cfg['warmup_momentum'], self.model_cfg['momentum']])
|
|
|
+ x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
|
|
|
|
|
|
# To device
|
|
|
images = images.to(self.device, non_blocking=True).float() / 255.
|
|
|
@@ -1297,11 +1287,14 @@ class DetrTrainer(object):
|
|
|
# Multi scale
|
|
|
if self.args.multi_scale:
|
|
|
images, targets, img_size = self.rescale_image_targets(
|
|
|
- images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
|
|
|
+ images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
|
|
|
else:
|
|
|
- targets = self.refine_targets(targets, self.args.min_box_size, img_size)
|
|
|
+ targets = self.refine_targets(targets, self.args.min_box_size)
|
|
|
+
|
|
|
+ # Normalize bbox
|
|
|
+ targets = self.normalize_bbox(targets, img_size)
|
|
|
|
|
|
- # Visualize targets
|
|
|
+ # Visualize train targets
|
|
|
if self.args.vis_tgt:
|
|
|
vis_data(images*255, targets)
|
|
|
|
|
|
@@ -1311,6 +1304,9 @@ class DetrTrainer(object):
|
|
|
# Compute loss
|
|
|
loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
|
|
|
losses = loss_dict['losses']
|
|
|
+ # Grad Accumulate
|
|
|
+ if self.grad_accumulate > 1:
|
|
|
+ losses /= self.grad_accumulate
|
|
|
|
|
|
loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
|
|
|
|
|
|
@@ -1318,21 +1314,22 @@ class DetrTrainer(object):
|
|
|
self.scaler.scale(losses).backward()
|
|
|
|
|
|
# Optimize
|
|
|
- if self.clip_grad > 0:
|
|
|
- # unscale gradients
|
|
|
- self.scaler.unscale_(self.optimizer)
|
|
|
- # clip gradients
|
|
|
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
|
|
|
- self.scaler.step(self.optimizer)
|
|
|
- self.scaler.update()
|
|
|
- self.optimizer.zero_grad()
|
|
|
-
|
|
|
- # Model EMA
|
|
|
- if self.model_ema is not None:
|
|
|
- self.model_ema.update(model)
|
|
|
- self.last_opt_step = ni
|
|
|
-
|
|
|
- # Log
|
|
|
+ if ni % self.grad_accumulate == 0:
|
|
|
+ grad_norm = None
|
|
|
+ if self.clip_grad > 0:
|
|
|
+ # unscale gradients
|
|
|
+ self.scaler.unscale_(self.optimizer)
|
|
|
+ # clip gradients
|
|
|
+ grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
|
|
|
+ # optimizer.step
|
|
|
+ self.scaler.step(self.optimizer)
|
|
|
+ self.scaler.update()
|
|
|
+ self.optimizer.zero_grad()
|
|
|
+ # ema
|
|
|
+ if self.model_ema is not None:
|
|
|
+ self.model_ema.update(model)
|
|
|
+
|
|
|
+ # Logs
|
|
|
if distributed_utils.is_main_process() and iter_i % 10 == 0:
|
|
|
t1 = time.time()
|
|
|
cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
|
|
|
@@ -1342,13 +1339,12 @@ class DetrTrainer(object):
|
|
|
log += '[lr: {:.6f}]'.format(cur_lr[0])
|
|
|
# loss infor
|
|
|
for k in loss_dict_reduced.keys():
|
|
|
- if self.args.vis_aux_loss:
|
|
|
- log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
|
|
|
- else:
|
|
|
- if k in ['loss_cls', 'loss_bbox', 'loss_giou', 'losses']:
|
|
|
- log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
|
|
|
-
|
|
|
+ loss_val = loss_dict_reduced[k]
|
|
|
+ if k == 'losses':
|
|
|
+ loss_val *= self.grad_accumulate
|
|
|
+ log += '[{}: {:.2f}]'.format(k, loss_val)
|
|
|
# other infor
|
|
|
+ log += '[grad_norm: {:.2f}]'.format(grad_norm)
|
|
|
log += '[time: {:.2f}]'.format(t1 - t0)
|
|
|
log += '[size: {}]'.format(img_size)
|
|
|
|
|
|
@@ -1357,33 +1353,35 @@ class DetrTrainer(object):
|
|
|
|
|
|
t0 = time.time()
|
|
|
|
|
|
- # LR Scheduler
|
|
|
- self.lr_scheduler.step()
|
|
|
+ # LR Schedule
|
|
|
+ if not self.second_stage:
|
|
|
+ self.lr_scheduler.step()
|
|
|
|
|
|
|
|
|
- def refine_targets(self, targets, min_box_size, img_size):
|
|
|
+ def refine_targets(self, targets, min_box_size):
|
|
|
# rescale targets
|
|
|
for tgt in targets:
|
|
|
- boxes = tgt["boxes"]
|
|
|
- labels = tgt["labels"]
|
|
|
+ boxes = tgt["boxes"].clone()
|
|
|
+ labels = tgt["labels"].clone()
|
|
|
# refine tgt
|
|
|
tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
|
|
|
min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
|
|
|
keep = (min_tgt_size >= min_box_size)
|
|
|
- # xyxy -> cxcywh
|
|
|
- new_boxes = torch.zeros_like(boxes)
|
|
|
- new_boxes[..., :2] = (boxes[..., 2:] + boxes[..., :2]) * 0.5
|
|
|
- new_boxes[..., 2:] = (boxes[..., 2:] - boxes[..., :2])
|
|
|
- # normalize
|
|
|
- new_boxes /= img_size
|
|
|
- del boxes
|
|
|
-
|
|
|
- tgt["boxes"] = new_boxes[keep]
|
|
|
+
|
|
|
+ tgt["boxes"] = boxes[keep]
|
|
|
tgt["labels"] = labels[keep]
|
|
|
|
|
|
return targets
|
|
|
|
|
|
|
|
|
+ def normalize_bbox(self, targets, img_size):
|
|
|
+ # normalize targets
|
|
|
+ for tgt in targets:
|
|
|
+ tgt["boxes"] /= img_size
|
|
|
+
|
|
|
+ return targets
|
|
|
+
|
|
|
+
|
|
|
def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
|
|
|
"""
|
|
|
Deployed for Multi scale trick.
|
|
|
@@ -1416,20 +1414,68 @@ class DetrTrainer(object):
|
|
|
tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
|
|
|
min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
|
|
|
keep = (min_tgt_size >= min_box_size)
|
|
|
- # xyxy -> cxcywh
|
|
|
- new_boxes = torch.zeros_like(boxes)
|
|
|
- new_boxes[..., :2] = (boxes[..., 2:] + boxes[..., :2]) * 0.5
|
|
|
- new_boxes[..., 2:] = (boxes[..., 2:] - boxes[..., :2])
|
|
|
- # normalize
|
|
|
- new_boxes /= new_img_size
|
|
|
- del boxes
|
|
|
-
|
|
|
- tgt["boxes"] = new_boxes[keep]
|
|
|
+
|
|
|
+ tgt["boxes"] = boxes[keep]
|
|
|
tgt["labels"] = labels[keep]
|
|
|
|
|
|
return images, targets, new_img_size
|
|
|
|
|
|
|
|
|
+ def check_second_stage(self):
|
|
|
+ # set second stage
|
|
|
+ print('============== Second stage of Training ==============')
|
|
|
+ self.second_stage = True
|
|
|
+
|
|
|
+ # close mosaic augmentation
|
|
|
+ if self.train_loader.dataset.mosaic_prob > 0.:
|
|
|
+ print(' - Close < Mosaic Augmentation > ...')
|
|
|
+ self.train_loader.dataset.mosaic_prob = 0.
|
|
|
+ self.heavy_eval = True
|
|
|
+
|
|
|
+ # close mixup augmentation
|
|
|
+ if self.train_loader.dataset.mixup_prob > 0.:
|
|
|
+ print(' - Close < Mixup Augmentation > ...')
|
|
|
+ self.train_loader.dataset.mixup_prob = 0.
|
|
|
+ self.heavy_eval = True
|
|
|
+
|
|
|
+ # close rotation augmentation
|
|
|
+ if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
|
|
|
+ print(' - Close < degress of rotation > ...')
|
|
|
+ self.trans_cfg['degrees'] = 0.0
|
|
|
+ if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
|
|
|
+ print(' - Close < shear of rotation >...')
|
|
|
+ self.trans_cfg['shear'] = 0.0
|
|
|
+ if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
|
|
|
+ print(' - Close < perspective of rotation > ...')
|
|
|
+ self.trans_cfg['perspective'] = 0.0
|
|
|
+
|
|
|
+ # build a new transform for second stage
|
|
|
+ print(' - Rebuild transforms ...')
|
|
|
+ self.train_transform, self.trans_cfg = build_transform(
|
|
|
+ args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
+ self.train_loader.dataset.transform = self.train_transform
|
|
|
+
|
|
|
+
|
|
|
+ def check_third_stage(self):
|
|
|
+ # set third stage
|
|
|
+ print('============== Third stage of Training ==============')
|
|
|
+ self.third_stage = True
|
|
|
+
|
|
|
+ # close random affine
|
|
|
+ if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
|
|
|
+ print(' - Close < translate of affine > ...')
|
|
|
+ self.trans_cfg['translate'] = 0.0
|
|
|
+ if 'scale' in self.trans_cfg.keys():
|
|
|
+ print(' - Close < scale of affine >...')
|
|
|
+ self.trans_cfg['scale'] = [1.0, 1.0]
|
|
|
+
|
|
|
+ # build a new transform for second stage
|
|
|
+ print(' - Rebuild transforms ...')
|
|
|
+ self.train_transform, self.trans_cfg = build_transform(
|
|
|
+ args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
+ self.train_loader.dataset.transform = self.train_transform
|
|
|
+
|
|
|
+
|
|
|
# Build Trainer
|
|
|
def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
|
|
|
if model_cfg['trainer_type'] == 'yolov8':
|
|
|
@@ -1438,8 +1484,8 @@ def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion
|
|
|
return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
|
|
|
elif model_cfg['trainer_type'] == 'rtcdet':
|
|
|
return RTCTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
|
|
|
- elif model_cfg['trainer_type'] == 'detr':
|
|
|
- return DetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
|
|
|
+ elif model_cfg['trainer_type'] == 'rtrdet':
|
|
|
+ return RTRTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
|
|
|
else:
|
|
|
raise NotImplementedError
|
|
|
|