| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from .rtrdet_backbone import build_backbone
- from .rtrdet_encoder import build_encoder
- from .rtrdet_decoder import build_decoder
- # Real-time Detection with Transformer
- class RTRDet(nn.Module):
- def __init__(self,
- cfg,
- device,
- num_classes :int = 20,
- trainable :bool = False,
- aux_loss :bool = False,
- deploy :bool = False):
- super(RTRDet, self).__init__()
- # ------------------ Basic parameters ------------------
- self.cfg = cfg
- self.device = device
- self.max_stride = cfg['max_stride']
- self.num_topk = cfg['num_topk']
- self.d_model = round(cfg['d_model'] * cfg['width'])
- self.num_classes = num_classes
- self.aux_loss = aux_loss
- self.trainable = trainable
- self.deploy = deploy
-
- # ------------------ Network parameters ------------------
- ## Backbone
- self.backbone, self.feat_dims = build_backbone(cfg, trainable&cfg['pretrained'])
- self.input_proj1 = nn.Conv2d(self.feat_dims[-1], self.d_model, kernel_size=1)
- self.input_proj2 = nn.Conv2d(self.feat_dims[-2], self.d_model, kernel_size=1)
- ## Transformer Encoder
- self.encoder = build_encoder(cfg)
- ## Transformer Decoder
- self.decoder = build_decoder(cfg, num_classes, return_intermediate=aux_loss)
- # ---------------------- Basic Functions ----------------------
- def position_embedding(self, x, temperature=10000):
- hs, ws = x.shape[-2:]
- device = x.device
- num_pos_feats = x.shape[1] // 2
- scale = 2 * 3.141592653589793
- # generate xy coord mat
- y_embed, x_embed = torch.meshgrid(
- [torch.arange(1, hs+1, dtype=torch.float32),
- torch.arange(1, ws+1, dtype=torch.float32)])
- y_embed = y_embed / (hs + 1e-6) * scale
- x_embed = x_embed / (ws + 1e-6) * scale
-
- # [H, W] -> [1, H, W]
- y_embed = y_embed[None, :, :].to(device)
- x_embed = x_embed[None, :, :].to(device)
- dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=device)
- dim_t_ = torch.div(dim_t, 2, rounding_mode='floor') / num_pos_feats
- dim_t = temperature ** (2 * dim_t_)
- pos_x = torch.div(x_embed[:, :, :, None], dim_t)
- pos_y = torch.div(y_embed[:, :, :, None], dim_t)
- pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
- pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
- # [B, C, H, W]
- pos_embed = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
-
- return pos_embed
-
- @torch.jit.unused
- def set_aux_loss(self, outputs_class, outputs_coord):
- # this is a workaround to make torchscript happy, as torchscript
- # doesn't support dictionary with non-homogeneous values, such
- # as a dict having both a Tensor and a list.
- return [{'pred_logits': a, 'pred_boxes': b}
- for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
- # ---------------------- Main Process for Inference ----------------------
- @torch.no_grad()
- def inference_single_image(self, x):
- # -------------------- Inference --------------------
- ## Backbone
- pyramid_feats = self.backbone(x)
- high_level_feat = self.input_proj1(pyramid_feats[-1])
- bs, c, h, w = high_level_feat.size()
- ## Transformer Encoder
- pos_embed1 = self.position_embedding(high_level_feat)
- high_level_feat = self.encoder(high_level_feat, pos_embed1, self.decoder.adapt_pos2d)
- high_level_feat = high_level_feat.permute(0, 2, 1).reshape(bs, c, h, w)
- p4_level_feat = self.input_proj2(pyramid_feats[-2]) + F.interpolate(high_level_feat, scale_factor=2.0)
- ## Transformer Decoder
- pos_embed2 = self.position_embedding(p4_level_feat)
- output_classes, output_coords = self.decoder(p4_level_feat, pos_embed2)
- # -------------------- Post-process --------------------
- ## Top-k
- cls_pred, box_pred = output_classes[-1].flatten().sigmoid_(), output_coords[-1]
- cls_pred = cls_pred[0].flatten().sigmoid_()
- box_pred = box_pred[0]
- predicted_prob, topk_idxs = cls_pred.sort(descending=True)
- topk_idxs = topk_idxs[:self.num_topk]
- topk_box_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
- topk_scores = predicted_prob[:self.num_topk]
- topk_labels = topk_idxs % self.num_classes
- topk_bboxes = box_pred[topk_box_idxs]
- ## Denormalize bbox
- img_h, img_w = x.shape[-2:]
- topk_bboxes[..., 0::2] *= img_w
- topk_bboxes[..., 1::2] *= img_h
- if self.deploy:
- return topk_bboxes, topk_scores, topk_labels
- else:
- return topk_bboxes.cpu().numpy(), topk_scores.cpu().numpy(), topk_labels.cpu().numpy()
-
- # ---------------------- Main Process for Training ----------------------
- def forward(self, x):
- if not self.trainable:
- return self.inference_single_image(x)
- else:
- # -------------------- Inference --------------------
- ## Backbone
- pyramid_feats = self.backbone(x)
- high_level_feat = self.input_proj1(pyramid_feats[-1])
- bs, c, h, w = high_level_feat.size()
- ## Transformer Encoder
- pos_embed1 = self.position_embedding(high_level_feat)
- high_level_feat = self.encoder(high_level_feat, pos_embed1, self.decoder.adapt_pos2d)
- high_level_feat = high_level_feat.permute(0, 2, 1).reshape(bs, c, h, w)
- p4_level_feat = self.input_proj2(pyramid_feats[-2]) + F.interpolate(high_level_feat, scale_factor=2.0)
- ## Transformer Decoder
- pos_embed2 = self.position_embedding(p4_level_feat)
- output_classes, output_coords = self.decoder(p4_level_feat, pos_embed2)
- outputs = {'pred_logits': output_classes[-1], 'pred_boxes': output_coords[-1]}
- if self.aux_loss:
- outputs['aux_outputs'] = self.set_aux_loss(output_classes, output_coords)
-
- return outputs
-
|