|
|
@@ -2,10 +2,10 @@
|
|
|
|
|
|
| Model | Backbone | Batch | Scale | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
|-----------|--------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
-| YOLOv5-N | CSPDarkNet-N | 1xb16 | 640 | 29.8 | 47.1 | 7.7 | 2.4 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov5_n_coco.pth) |
|
|
|
-| YOLOv5-S | CSPDarkNet-S | 1xb16 | 640 | 37.8 | 56.5 | 27.1 | 9.0 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov5_s_coco.pth) |
|
|
|
-| YOLOv5-M | CSPDarkNet-M | 1xb16 | 640 | 43.5 | 62.5 | 74.3 | 25.4 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov5_m_coco.pth) |
|
|
|
-| YOLOv5-L | CSPDarkNet-L | 1xb16 | 640 | 46.7 | 65.5 | 155.6 | 54.2 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov5_l_coco.pth) |
|
|
|
+| YOLOv5-N | CSPDarkNet-N | 1xb16 | 640 | 29.8 | 47.1 | 7.7 | 2.4 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov5_n_coco.pth) |
|
|
|
+| YOLOv5-S | CSPDarkNet-S | 1xb16 | 640 | 37.8 | 56.5 | 27.1 | 9.0 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov5_s_coco.pth) |
|
|
|
+| YOLOv5-M | CSPDarkNet-M | 1xb16 | 640 | 43.5 | 62.5 | 74.3 | 25.4 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov5_m_coco.pth) |
|
|
|
+| YOLOv5-L | CSPDarkNet-L | 1xb16 | 640 | 46.7 | 65.5 | 155.6 | 54.2 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov5_l_coco.pth) |
|
|
|
|
|
|
- For training, we train YOLOv5 series with 300 epochs on COCO.
|
|
|
- For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of [YOLOv5](https://github.com/ultralytics/yolov5).
|