|
|
@@ -47,18 +47,6 @@ For example:
|
|
|
python train.py --cuda -d voc --root path/to/VOCdevkit -m yolov1 -bs 16 --max_epoch 150 --wp_epoch 1 --eval_epoch 10 --fp16 --ema --multi_scale
|
|
|
```
|
|
|
|
|
|
-| Model | Backbone | Scale | IP | Epoch | AP<sup>val<br>0.5 | FPS<sup>3090<br>FP32-bs1 | Weight |
|
|
|
-|--------------|---------------------|-------|------|-------|-------------------|--------------------------|--------|
|
|
|
-| YOLOv1 | ResNet-18 | 640 | √ | 150 | 76.7 | | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov1_voc.pth) |
|
|
|
-| YOLOv2 | DarkNet-19 | 640 | √ | 150 | 79.8 | | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov2_voc.pth) |
|
|
|
-| YOLOv3 | DarkNet-53 | 640 | √ | 150 | 82.0 | | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov3_voc.pth) |
|
|
|
-| YOLOv4 | CSPDarkNet-53 | 640 | √ | 150 | 83.6 | | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov4_voc.pth) |
|
|
|
-| YOLOX-L | CSPDarkNet-L | 640 | √ | 150 | 84.6 | | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_voc.pth) |
|
|
|
-| YOLOv7-Large | ELANNet-Large | 640 | √ | 150 | 86.0 | | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov7_large_voc.pth) |
|
|
|
-
|
|
|
-*All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on VOC2007 test. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.*
|
|
|
-
|
|
|
-
|
|
|
### COCO
|
|
|
|
|
|
- Download COCO.
|