|
|
@@ -1,22 +1,16 @@
|
|
|
-# PyTorch_YOLO_Tutorial
|
|
|
-YOLO Tutorial
|
|
|
+# Real-time General Object Detection
|
|
|
|
|
|
-English | [简体中文](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/blob/main/README_CN.md)
|
|
|
-
|
|
|
-# Introduction
|
|
|
-Here is the source code for an introduction to YOLO. We adopted the core concepts of **YOLOv1~v4**, **YOLOX** and **YOLOv7** for this project and made the necessary adjustments. By learning how to construct the well-known YOLO detector, we hope that newcomers can enter the field of object detection without any difficulty.
|
|
|
-
|
|
|
-**Book**: The technical books that go along with this project's code is being reviewed, please be patient.
|
|
|
+English | [简体中文](https://github.com/yjh0410/RT-ODLab/blob/main/README_CN.md)
|
|
|
|
|
|
## Requirements
|
|
|
- We recommend you to use Anaconda to create a conda environment:
|
|
|
```Shell
|
|
|
-conda create -n yolo python=3.6
|
|
|
+conda create -n rtcdet python=3.6
|
|
|
```
|
|
|
|
|
|
- Then, activate the environment:
|
|
|
```Shell
|
|
|
-conda activate yolo
|
|
|
+conda activate rtcdet
|
|
|
```
|
|
|
|
|
|
- Requirements:
|
|
|
@@ -34,7 +28,7 @@ At least, please make sure your torch is version 1.x.
|
|
|
### VOC
|
|
|
- Download VOC.
|
|
|
```Shell
|
|
|
-cd <PyTorch_YOLO_Tutorial>
|
|
|
+cd <RT-ODLab>
|
|
|
cd dataset/scripts/
|
|
|
sh VOC2007.sh
|
|
|
sh VOC2012.sh
|
|
|
@@ -42,7 +36,7 @@ sh VOC2012.sh
|
|
|
|
|
|
- Check VOC
|
|
|
```Shell
|
|
|
-cd <PyTorch_YOLO_Tutorial>
|
|
|
+cd <RT-ODLab>
|
|
|
python dataset/voc.py
|
|
|
```
|
|
|
|
|
|
@@ -69,14 +63,14 @@ python train.py --cuda -d voc --root path/to/VOCdevkit -m yolov1 -bs 16 --max_ep
|
|
|
|
|
|
- Download COCO.
|
|
|
```Shell
|
|
|
-cd <PyTorch_YOLO_Tutorial>
|
|
|
+cd <RT-ODLab>
|
|
|
cd dataset/scripts/
|
|
|
sh COCO2017.sh
|
|
|
```
|
|
|
|
|
|
- Check COCO
|
|
|
```Shell
|
|
|
-cd <PyTorch_YOLO_Tutorial>
|
|
|
+cd <RT-ODLab>
|
|
|
python dataset/coco.py
|
|
|
```
|
|
|
|