|
|
@@ -0,0 +1,238 @@
|
|
|
+import math
|
|
|
+import warnings
|
|
|
+import numpy as np
|
|
|
+import torch
|
|
|
+import torch.nn as nn
|
|
|
+
|
|
|
+
|
|
|
+def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
|
|
+ """Copy from timm"""
|
|
|
+ with torch.no_grad():
|
|
|
+ """Copy from timm"""
|
|
|
+ def norm_cdf(x):
|
|
|
+ return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
|
|
+
|
|
|
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
|
|
|
+ warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
|
|
+ "The distribution of values may be incorrect.",
|
|
|
+ stacklevel=2)
|
|
|
+
|
|
|
+ l = norm_cdf((a - mean) / std)
|
|
|
+ u = norm_cdf((b - mean) / std)
|
|
|
+
|
|
|
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
|
|
|
+ tensor.erfinv_()
|
|
|
+
|
|
|
+ tensor.mul_(std * math.sqrt(2.))
|
|
|
+ tensor.add_(mean)
|
|
|
+
|
|
|
+ tensor.clamp_(min=a, max=b)
|
|
|
+
|
|
|
+ return tensor
|
|
|
+
|
|
|
+
|
|
|
+# ---------------------------- NMS ----------------------------
|
|
|
+## basic NMS
|
|
|
+def nms(bboxes, scores, nms_thresh):
|
|
|
+ """"Pure Python NMS."""
|
|
|
+ x1 = bboxes[:, 0] #xmin
|
|
|
+ y1 = bboxes[:, 1] #ymin
|
|
|
+ x2 = bboxes[:, 2] #xmax
|
|
|
+ y2 = bboxes[:, 3] #ymax
|
|
|
+
|
|
|
+ areas = (x2 - x1) * (y2 - y1)
|
|
|
+ order = scores.argsort()[::-1]
|
|
|
+
|
|
|
+ keep = []
|
|
|
+ while order.size > 0:
|
|
|
+ i = order[0]
|
|
|
+ keep.append(i)
|
|
|
+ # compute iou
|
|
|
+ xx1 = np.maximum(x1[i], x1[order[1:]])
|
|
|
+ yy1 = np.maximum(y1[i], y1[order[1:]])
|
|
|
+ xx2 = np.minimum(x2[i], x2[order[1:]])
|
|
|
+ yy2 = np.minimum(y2[i], y2[order[1:]])
|
|
|
+
|
|
|
+ w = np.maximum(1e-10, xx2 - xx1)
|
|
|
+ h = np.maximum(1e-10, yy2 - yy1)
|
|
|
+ inter = w * h
|
|
|
+
|
|
|
+ iou = inter / (areas[i] + areas[order[1:]] - inter + 1e-14)
|
|
|
+ #reserve all the boundingbox whose ovr less than thresh
|
|
|
+ inds = np.where(iou <= nms_thresh)[0]
|
|
|
+ order = order[inds + 1]
|
|
|
+
|
|
|
+ return keep
|
|
|
+
|
|
|
+## class-agnostic NMS
|
|
|
+def multiclass_nms_class_agnostic(scores, labels, bboxes, nms_thresh):
|
|
|
+ # nms
|
|
|
+ keep = nms(bboxes, scores, nms_thresh)
|
|
|
+ scores = scores[keep]
|
|
|
+ labels = labels[keep]
|
|
|
+ bboxes = bboxes[keep]
|
|
|
+
|
|
|
+ return scores, labels, bboxes
|
|
|
+
|
|
|
+## class-aware NMS
|
|
|
+def multiclass_nms_class_aware(scores, labels, bboxes, nms_thresh, num_classes):
|
|
|
+ # nms
|
|
|
+ keep = np.zeros(len(bboxes), dtype=np.int32)
|
|
|
+ for i in range(num_classes):
|
|
|
+ inds = np.where(labels == i)[0]
|
|
|
+ if len(inds) == 0:
|
|
|
+ continue
|
|
|
+ c_bboxes = bboxes[inds]
|
|
|
+ c_scores = scores[inds]
|
|
|
+ c_keep = nms(c_bboxes, c_scores, nms_thresh)
|
|
|
+ keep[inds[c_keep]] = 1
|
|
|
+ keep = np.where(keep > 0)
|
|
|
+ scores = scores[keep]
|
|
|
+ labels = labels[keep]
|
|
|
+ bboxes = bboxes[keep]
|
|
|
+
|
|
|
+ return scores, labels, bboxes
|
|
|
+
|
|
|
+## multi-class NMS
|
|
|
+def multiclass_nms(scores, labels, bboxes, nms_thresh, num_classes, class_agnostic=False):
|
|
|
+ if class_agnostic:
|
|
|
+ return multiclass_nms_class_agnostic(scores, labels, bboxes, nms_thresh)
|
|
|
+ else:
|
|
|
+ return multiclass_nms_class_aware(scores, labels, bboxes, nms_thresh, num_classes)
|
|
|
+
|
|
|
+
|
|
|
+# ----------------- Customed NormLayer Ops -----------------
|
|
|
+class LayerNorm2D(nn.Module):
|
|
|
+ def __init__(self, normalized_shape, norm_layer=nn.LayerNorm):
|
|
|
+ super().__init__()
|
|
|
+ self.ln = norm_layer(normalized_shape) if norm_layer is not None else nn.Identity()
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ """
|
|
|
+ x: N C H W
|
|
|
+ """
|
|
|
+ x = x.permute(0, 2, 3, 1)
|
|
|
+ x = self.ln(x)
|
|
|
+ x = x.permute(0, 3, 1, 2)
|
|
|
+ return x
|
|
|
+
|
|
|
+
|
|
|
+# ----------------- Basic CNN Ops -----------------
|
|
|
+def get_conv2d(c1, c2, k, p, s, g, bias=False):
|
|
|
+ conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, groups=g, bias=bias)
|
|
|
+
|
|
|
+ return conv
|
|
|
+
|
|
|
+def get_activation(act_type=None):
|
|
|
+ if act_type == 'relu':
|
|
|
+ return nn.ReLU(inplace=True)
|
|
|
+ elif act_type == 'lrelu':
|
|
|
+ return nn.LeakyReLU(0.1, inplace=True)
|
|
|
+ elif act_type == 'mish':
|
|
|
+ return nn.Mish(inplace=True)
|
|
|
+ elif act_type == 'silu':
|
|
|
+ return nn.SiLU(inplace=True)
|
|
|
+ elif act_type == 'gelu':
|
|
|
+ return nn.GELU()
|
|
|
+ elif act_type is None:
|
|
|
+ return nn.Identity()
|
|
|
+ else:
|
|
|
+ raise NotImplementedError
|
|
|
+
|
|
|
+def get_norm(norm_type, dim):
|
|
|
+ if norm_type == 'BN':
|
|
|
+ return nn.BatchNorm2d(dim)
|
|
|
+ elif norm_type == 'GN':
|
|
|
+ return nn.GroupNorm(num_groups=32, num_channels=dim)
|
|
|
+ elif norm_type is None:
|
|
|
+ return nn.Identity()
|
|
|
+ else:
|
|
|
+ raise NotImplementedError
|
|
|
+
|
|
|
+class BasicConv(nn.Module):
|
|
|
+ def __init__(self,
|
|
|
+ in_dim, # in channels
|
|
|
+ out_dim, # out channels
|
|
|
+ kernel_size=1, # kernel size
|
|
|
+ padding=0, # padding
|
|
|
+ stride=1, # padding
|
|
|
+ act_type :str = 'lrelu', # activation
|
|
|
+ norm_type :str = 'BN', # normalization
|
|
|
+ ):
|
|
|
+ super(BasicConv, self).__init__()
|
|
|
+ add_bias = False if norm_type else True
|
|
|
+ self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, g=1, bias=add_bias)
|
|
|
+ self.norm = get_norm(norm_type, out_dim)
|
|
|
+ self.act = get_activation(act_type)
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ return self.act(self.norm(self.conv(x)))
|
|
|
+
|
|
|
+class UpSampleWrapper(nn.Module):
|
|
|
+ """Upsample last feat map to specific stride."""
|
|
|
+ def __init__(self, in_dim, upsample_factor):
|
|
|
+ super(UpSampleWrapper, self).__init__()
|
|
|
+ # ---------- Basic parameters ----------
|
|
|
+ self.upsample_factor = upsample_factor
|
|
|
+
|
|
|
+ # ---------- Network parameters ----------
|
|
|
+ if upsample_factor == 1:
|
|
|
+ self.upsample = nn.Identity()
|
|
|
+ else:
|
|
|
+ scale = int(math.log2(upsample_factor))
|
|
|
+ dim = in_dim
|
|
|
+ layers = []
|
|
|
+ for _ in range(scale-1):
|
|
|
+ layers += [
|
|
|
+ nn.ConvTranspose2d(dim, dim, kernel_size=2, stride=2),
|
|
|
+ LayerNorm2D(dim),
|
|
|
+ nn.GELU()
|
|
|
+ ]
|
|
|
+ layers += [nn.ConvTranspose2d(dim, dim, kernel_size=2, stride=2)]
|
|
|
+ self.upsample = nn.Sequential(*layers)
|
|
|
+ self.out_dim = dim
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ x = self.upsample(x)
|
|
|
+
|
|
|
+ return x
|
|
|
+
|
|
|
+
|
|
|
+# ----------------- MLP modules -----------------
|
|
|
+class MLP(nn.Module):
|
|
|
+ def __init__(self, in_dim, hidden_dim, out_dim, num_layers):
|
|
|
+ super().__init__()
|
|
|
+ self.num_layers = num_layers
|
|
|
+ h = [hidden_dim] * (num_layers - 1)
|
|
|
+ self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([in_dim] + h, h + [out_dim]))
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ for i, layer in enumerate(self.layers):
|
|
|
+ x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
|
|
+ return x
|
|
|
+
|
|
|
+class FFN(nn.Module):
|
|
|
+ def __init__(self, d_model=256, mlp_ratio=4.0, dropout=0., act_type='relu', pre_norm=False):
|
|
|
+ super().__init__()
|
|
|
+ # ----------- Basic parameters -----------
|
|
|
+ self.pre_norm = pre_norm
|
|
|
+ self.fpn_dim = round(d_model * mlp_ratio)
|
|
|
+ # ----------- Network parameters -----------
|
|
|
+ self.linear1 = nn.Linear(d_model, self.fpn_dim)
|
|
|
+ self.activation = get_activation(act_type)
|
|
|
+ self.dropout2 = nn.Dropout(dropout)
|
|
|
+ self.linear2 = nn.Linear(self.fpn_dim, d_model)
|
|
|
+ self.dropout3 = nn.Dropout(dropout)
|
|
|
+ self.norm = nn.LayerNorm(d_model)
|
|
|
+
|
|
|
+ def forward(self, src):
|
|
|
+ if self.pre_norm:
|
|
|
+ src = self.norm(src)
|
|
|
+ src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
|
|
|
+ src = src + self.dropout3(src2)
|
|
|
+ else:
|
|
|
+ src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
|
|
|
+ src = src + self.dropout3(src2)
|
|
|
+ src = self.norm(src)
|
|
|
+
|
|
|
+ return src
|