| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- # --------------- Torch components ---------------
- import torch
- import torch.nn as nn
- # --------------- Model components ---------------
- try:
- from .vitdet_encoder import build_image_encoder
- from .vitdet_decoder import build_decoder
- from .vitdet_head import build_predictor
- from .basic_modules.basic import multiclass_nms
- except:
- from vitdet_encoder import build_image_encoder
- from vitdet_decoder import build_decoder
- from vitdet_head import build_predictor
- from basic_modules.basic import multiclass_nms
- # Real-time ViT-based Object Detector
- class ViTDet(nn.Module):
- def __init__(self,
- cfg,
- device,
- num_classes = 20,
- conf_thresh = 0.01,
- nms_thresh = 0.5,
- topk = 1000,
- trainable = False,
- deploy = False,
- no_multi_labels = False,
- nms_class_agnostic = False,
- ):
- super(ViTDet, self).__init__()
- # ---------------------- Basic Parameters ----------------------
- self.cfg = cfg
- self.device = device
- self.strides = cfg['stride']
- self.num_classes = num_classes
- ## Scale hidden channels by width_factor
- cfg['hidden_dim'] = round(cfg['hidden_dim'] * cfg['width'])
- cfg['pretrained'] = cfg['pretrained'] & trainable
- ## Post-process parameters
- self.conf_thresh = conf_thresh
- self.nms_thresh = nms_thresh
- self.topk = topk
- self.deploy = deploy
- self.no_multi_labels = no_multi_labels
- self.nms_class_agnostic = nms_class_agnostic
-
- # ---------------------- Network Parameters ----------------------
- ## ----------- Encoder -----------
- self.encoder = build_image_encoder(cfg)
- ## ----------- Decoder -----------
- self.decoder = build_decoder(cfg, self.encoder.fpn_dims, num_levels=3)
-
- ## ----------- Preds -----------
- self.predictor = build_predictor(cfg, self.strides, num_classes, 4, 3)
- def post_process(self, cls_preds, box_preds):
- """
- Input:
- cls_preds: List[np.array] -> [[M, C], ...]
- box_preds: List[np.array] -> [[M, 4], ...]
- Output:
- bboxes: np.array -> [N, 4]
- scores: np.array -> [N,]
- labels: np.array -> [N,]
- """
- all_scores = []
- all_labels = []
- all_bboxes = []
-
- for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
- cls_pred_i = cls_pred_i[0]
- box_pred_i = box_pred_i[0]
- if self.no_multi_labels:
- # [M,]
- scores, labels = torch.max(cls_pred_i.sigmoid(), dim=1)
- # Keep top k top scoring indices only.
- num_topk = min(self.topk_candidates, box_pred_i.size(0))
- # topk candidates
- predicted_prob, topk_idxs = scores.sort(descending=True)
- topk_scores = predicted_prob[:num_topk]
- topk_idxs = topk_idxs[:num_topk]
- # filter out the proposals with low confidence score
- keep_idxs = topk_scores > self.conf_thresh
- scores = topk_scores[keep_idxs]
- topk_idxs = topk_idxs[keep_idxs]
- labels = labels[topk_idxs]
- bboxes = box_pred_i[topk_idxs]
- else:
- # [M, C] -> [MC,]
- scores_i = cls_pred_i.sigmoid().flatten()
- # Keep top k top scoring indices only.
- num_topk = min(self.topk_candidates, box_pred_i.size(0))
- # torch.sort is actually faster than .topk (at least on GPUs)
- predicted_prob, topk_idxs = scores_i.sort(descending=True)
- topk_scores = predicted_prob[:num_topk]
- topk_idxs = topk_idxs[:num_topk]
- # filter out the proposals with low confidence score
- keep_idxs = topk_scores > self.conf_thresh
- scores = topk_scores[keep_idxs]
- topk_idxs = topk_idxs[keep_idxs]
- anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
- labels = topk_idxs % self.num_classes
- bboxes = box_pred_i[anchor_idxs]
- all_scores.append(scores)
- all_labels.append(labels)
- all_bboxes.append(bboxes)
- scores = torch.cat(all_scores, dim=0)
- labels = torch.cat(all_labels, dim=0)
- bboxes = torch.cat(all_bboxes, dim=0)
- if not self.deploy:
- # to cpu & numpy
- scores = scores.cpu().numpy()
- labels = labels.cpu().numpy()
- bboxes = bboxes.cpu().numpy()
- # nms
- scores, labels, bboxes = multiclass_nms(
- scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
- return bboxes, scores, labels
-
- def forward(self, x):
- # ---------------- Backbone ----------------
- pyramid_feats = self.encoder(x)
- # ---------------- Heads ----------------
- outputs = self.decoder(pyramid_feats)
- # ---------------- Preds ----------------
- outputs = self.predictor(outputs['cls_feats'], outputs['reg_feats'])
- if not self.training:
- cls_pred = outputs["pred_cls"]
- box_pred = outputs["pred_box"]
- # post process
- bboxes, scores, labels = self.post_process(cls_pred, box_pred)
- outputs = {
- "scores": scores,
- "labels": labels,
- "bboxes": bboxes
- }
-
- return outputs
-
- if __name__ == '__main__':
- import time
- from thop import profile
- from loss import build_criterion
- # Model config
- cfg = {
- 'width': 1.0,
- 'depth': 1.0,
- 'out_stride': [8, 16, 32],
- # Image Encoder - Backbone
- 'backbone': 'resnet18',
- 'backbone_norm': 'BN',
- 'res5_dilation': False,
- 'pretrained': True,
- 'pretrained_weight': 'imagenet1k_v1',
- 'freeze_at': 0,
- 'freeze_stem_only': False,
- 'out_stride': [8, 16, 32],
- 'max_stride': 32,
- # Convolutional Decoder
- 'hidden_dim': 256,
- 'decoder': 'det_decoder',
- 'de_num_cls_layers': 2,
- 'de_num_reg_layers': 2,
- 'de_act': 'silu',
- 'de_norm': 'BN',
- # Matcher
- 'matcher_hpy': {'soft_center_radius': 2.5,
- 'topk_candidates': 13,},
- # Loss
- 'use_vfl': True,
- 'loss_coeff': {'class': 1,
- 'bbox': 1,
- 'giou': 2,},
- }
- bs = 1
- # Create a batch of images & targets
- image = torch.randn(bs, 3, 640, 640).cuda()
- targets = [{
- 'labels': torch.tensor([2, 4, 5, 8]).long().cuda(),
- 'boxes': torch.tensor([[0, 0, 10, 10], [12, 23, 56, 70], [0, 10, 20, 30], [50, 60, 55, 150]]).float().cuda() / 640.
- }] * bs
- # Create model
- model = ViTDet(cfg, num_classes=20)
- model.train().cuda()
- # Create criterion
- criterion = build_criterion(cfg, num_classes=20)
- # Model inference
- t0 = time.time()
- outputs = model(image, targets)
- t1 = time.time()
- print('Infer time: ', t1 - t0)
- # Compute loss
- loss = criterion(outputs, targets)
- for k in loss.keys():
- print("{} : {}".format(k, loss[k].item()))
- print('==============================')
- model.eval()
- flops, params = profile(model, inputs=(image, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|