{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"sys.path.append(os.path.abspath(os.path.join('..')))\n",
"from ch07_autograd.utils import Scalar, draw_graph"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 为了图形简洁易懂,假设只有一个权重项参数\n",
"## 当线性输出较小时,梯度不会溢出\n",
"w = Scalar(5.0, label='w')\n",
"b = Scalar(1.0, label='b')\n",
"x = Scalar(0.1, label='x', requires_grad=False)\n",
"h = w * x + b\n",
"l = h.sigmoid()\n",
"l.backward()\n",
"draw_graph(l, 'backward')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 当线性输出较大时,梯度溢出\n",
"w = Scalar(5.0, label='w')\n",
"b = Scalar(1.0, label='b')\n",
"x = Scalar(20.1, label='x', requires_grad=False)\n",
"h = w * x + b\n",
"l = h.sigmoid()\n",
"l.backward()\n",
"draw_graph(l, 'backward')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 不同数据点的反向传播是相互独立的\n",
"w = Scalar(50.0, label='w')\n",
"b = Scalar(20.0, label='b')\n",
"x1 = Scalar(1.1, label='x1', requires_grad=False)\n",
"x2 = Scalar(-0.4, label='x2', requires_grad=False)\n",
"h1 = w * x1 + b\n",
"l1 = h1.sigmoid()\n",
"h2 = w * x2 + b\n",
"l2 = h2.sigmoid()\n",
"l = l1 + l2\n",
"l.backward()\n",
"draw_graph(l, 'backward')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 当对于所有数据,相应的线性输出都较大时,该神经元相当于坏死掉\n",
"w = Scalar(50.0, label='w')\n",
"b = Scalar(20.0, label='b')\n",
"x3 = Scalar(1.3, label='x3', requires_grad=False)\n",
"x4 = Scalar(1.4, label='x4', requires_grad=False)\n",
"h3 = w * x3 + b\n",
"l3 = h3.sigmoid()\n",
"h4 = w * x4 + b\n",
"l4 = h4.sigmoid()\n",
"l = l3 + l4\n",
"l.backward()\n",
"draw_graph(l, 'backward')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}